Spectral analysis and computation for the Kuramoto-Sakaguchi integroparabolic equation

被引:9
作者
Acebrón, JA [1 ]
Lavrentiev, MM
Spigler, R
机构
[1] Univ Carlos III Madrid, Escuela Politecn Super, Madrid, Spain
[2] Russian Acad Sci, Siberian Div, Sobolev Inst Math, Novosibirsk, Russia
[3] Univ Roma Tre, Dipartimento Matemat, Rome, Italy
基金
俄罗斯基础研究基金会;
关键词
spectral method; nonlinear parabolic equations; integro-differential parabolic equations; populations of coupled oscillators; Kuramoto-Sakaguchi equation;
D O I
10.1093/imanum/21.1.239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A spectral method is developed to numerically solve the so-called Kuramot-Sakaguchi equation, which is a nonlinear integro-differential equation of the parabolic type, governing the dynamical statistical behaviour of certain populations of nonlinearly coupled random oscillators. The approach rests on explicit bounds for the space derivatives of solutions, obtained via energy-like estimates. Bounds for the numerical approximations of solutions are given, and improved (sometimes appreciably) by means of an 'a posteriori error analysis'. Plots are shown to illustrate the performance of the method, and comparison with a finite difference approach is also made.
引用
收藏
页码:239 / 263
页数:25
相关论文
共 29 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS F, DOI DOI 10.1119/1.15378
[2]   Breaking the symmetry in bimodal frequency distributions of globally coupled oscillators [J].
Acebron, JA ;
Bonilla, LL ;
De Leo, S ;
Spigler, R .
PHYSICAL REVIEW E, 1998, 57 (05) :5287-5290
[3]  
[Anonymous], LECT NOTES ENG
[4]   NONLINEAR STABILITY OF INCOHERENCE AND COLLECTIVE SYNCHRONIZATION IN A POPULATION OF COUPLED OSCILLATORS [J].
BONILLA, LL ;
NEU, JC ;
SPIGLER, R .
JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (1-2) :313-380
[5]   Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions [J].
Bonilla, LL ;
Vicente, CJP ;
Spigler, R .
PHYSICA D, 1998, 113 (01) :79-97
[6]  
Canuto C., 2012, Spectral Methods: Fundamentals in Single Domains
[7]   THE REFORMULATION AND NUMERICAL-SOLUTION OF CERTAIN NONCLASSICAL INITIAL-BOUNDARY VALUE-PROBLEMS [J].
FAIRWEATHER, G ;
SAYLOR, RD .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (01) :127-144
[8]   A BOX METHOD FOR A NONLINEAR EQUATION OF POPULATION-DYNAMICS [J].
FAIRWEATHER, G ;
LOPEZMARCOS, JC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1991, 11 (04) :525-538
[9]   AN EXPLICIT EXTRAPOLATED BOX SCHEME FOR THE GURTIN-MACCAMY EQUATION [J].
FAIRWEATHER, G ;
LOPEZMARCOS, JC .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 27 (02) :41-53
[10]  
FORNBERG B, 1994, ACTA NUMER, P203