Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors

被引:60
作者
Chandler, E. M. [1 ]
Saunders, M. P. [1 ,2 ]
Yoon, C. J. [1 ]
Gourdon, D. [2 ]
Fischbach, C. [1 ]
机构
[1] Cornell Univ, Dept Biomed Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
STEM-CELLS; TGF-BETA; EXTRACELLULAR-MATRIX; CANCER GROWTH; COLLAGEN; FIBROBLASTS; PROTEINS; BINDING; FORCE; DIFFERENTIATION;
D O I
10.1088/1478-3975/8/1/015008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Increased stiffness represents a hallmark of breast cancer that has been attributed to the altered physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We have utilized a combination of biochemical and physical science tools to evaluate whether paracrine signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy transfer imaging to map the molecular conformation and stiffness of Fn that has been assembled by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening by adipose progenitor cells and that transforming growth factor-beta serves as a soluble cue underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our results. Insights gained by these studies advance our understanding of the role of Fn in mammary tumorigenesis and may ultimately lead to improved anti-cancer therapies.
引用
收藏
页数:13
相关论文
共 56 条
[1]   Fibronectin in aging extracellular matrix fibrils is progressively unfolded by cells and elicits an enhanced rigidity response [J].
Antia, Meher ;
Baneyx, Gretchen ;
Kubow, Kristopher E. ;
Vogel, Viola .
FARADAY DISCUSSIONS, 2008, 139 :229-249
[2]   Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma [J].
Armstrong, T ;
Packham, G ;
Murphy, LB ;
Bateman, AC ;
Conti, JA ;
Fine, DR ;
Johnson, CD ;
Benyon, RC ;
Iredale, JP .
CLINICAL CANCER RESEARCH, 2004, 10 (21) :7427-7437
[3]   Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension [J].
Baneyx, G ;
Baugh, L ;
Vogel, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :5139-5143
[4]   Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer [J].
Baneyx, G ;
Baugh, L ;
Vogel, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14464-14468
[5]  
Berking C, 2001, CANCER RES, V61, P8306
[6]  
Castello-Cros Remedios, 2009, V522, P275, DOI 10.1007/978-1-59745-413-1_19
[7]  
Clark RAF, 1997, J CELL PHYSIOL, V170, P69
[8]   Taking cell-matrix adhesions to the third dimension [J].
Cukierman, E ;
Pankov, R ;
Stevens, DR ;
Yamada, KM .
SCIENCE, 2001, 294 (5547) :1708-1712
[9]   Stresses at the cell-to-substrate interface during locomotion of fibroblasts [J].
Dembo, M ;
Wang, YL .
BIOPHYSICAL JOURNAL, 1999, 76 (04) :2307-2316
[10]   Matrix elasticity directs stem cell lineage specification [J].
Engler, Adam J. ;
Sen, Shamik ;
Sweeney, H. Lee ;
Discher, Dennis E. .
CELL, 2006, 126 (04) :677-689