A network representation of protein structures: Implications for protein stability

被引:341
作者
Brinda, KV [1 ]
Vishveshwara, S [1 ]
机构
[1] Indian Inst Sci, Mol Biophys Unit, Bangalore 560012, Karnataka, India
关键词
D O I
10.1529/biophysj.105.064485
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This study views each protein structure as a network of noncovalent connections between amino acid side chains. Each amino acid in a protein structure is a node, and the strength of the noncovalent interactions between two amino acids is evaluated for edge determination. The protein structure graphs (PSGs) for 232 proteins have been constructed as a function of the cutoff of the amino acid interaction strength at a few carefully chosen values. Analysis of such PSGs constructed on the basis of edge weights has shown the following: 1), The PSGs exhibit a complex topological network behavior, which is dependent on the interaction cutoff chosen for PSG construction. 2), A transition is observed at a critical interaction cutoff, in all the proteins, as monitored by the size of the largest cluster (giant component) in the graph. Amazingly, this transition occurs within a narrow range of interaction cutoff for all the proteins, irrespective of the size or the fold topology. And 3), the amino acid preferences to be highly connected (hub frequency) have been evaluated as a function of the interaction cutoff. We observe that the aromatic residues along with arginine, histidine, and methionine act as strong hubs at high interaction cutoffs, whereas the hydrophobic leucine and isoleucine residues get added to these hubs at low interaction cutoffs, forming weak hubs. The hubs identified are found to play a role in bringing together different secondary structural elements in the tertiary structure of the proteins. They are also found to contribute to the additional stability of the thermophilic proteins when compared to their mesophilic counterparts and hence could be crucial for the folding and stability of the unique three-dimensional structure of proteins. Based on these results, we also predict a few residues in the thermophilic and mesophilic proteins that can be mutated to alter their thermal stability.
引用
收藏
页码:4159 / 4170
页数:12
相关论文
共 32 条
[1]   Classes of small-world networks [J].
Amaral, LAN ;
Scala, A ;
Barthélémy, M ;
Stanley, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11149-11152
[2]   Network analysis of protein structures identifies functional residues [J].
Amitai, G ;
Shemesh, A ;
Sitbon, E ;
Shklar, M ;
Netanely, D ;
Venger, I ;
Pietrokovski, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 344 (04) :1135-1146
[3]  
[Anonymous], 2018, INTRO PERCOLATION TH
[4]   Small-world communication of residues and significance for protein dynamics [J].
Atilgan, AR ;
Akan, P ;
Baysal, C .
BIOPHYSICAL JOURNAL, 2004, 86 (01) :85-91
[5]   Network properties of protein structures [J].
Bagler, G ;
Sinha, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 346 (1-2) :27-33
[6]  
Barabasi A.L., 2002, The formula: the universal laws of success
[7]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[8]   Analysis of homodimeric protein interfaces by graph-spectral methods [J].
Brinda, KV ;
Kannan, N ;
Vishveshwara, S .
PROTEIN ENGINEERING, 2002, 15 (04) :265-277
[9]   ALIGN: a program to superimpose protein coordinates, accounting for insertions and deletions [J].
Cohen, GH .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1997, 30 :1160-1161
[10]   Topological determinants of protein folding [J].
Dokholyan, NV ;
Li, L ;
Ding, F ;
Shakhnovich, EI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8637-8641