The finite Larmor radius approximation

被引:53
作者
Frenod, E
Sonnendrücker, E
机构
[1] Univ Bretagne Sud, Lab Math & Applicat Math, F-56017 Vannes, France
[2] Univ Henri Poincare, Inst Elie Cartan, CNRS, Nancy, France
[3] Univ Strasbourg 1, Inst Rech Math Avancees, F-67084 Strasbourg, France
关键词
Vlasov-Poisson equations; kinetic equations; homogenization; two-scale convergence; multiple time scales;
D O I
10.1137/S0036141099364243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The presence of a large external magnetic field in a plasma introduces an additional time-scale which is very constraining for the numerical simulation. Hence it is very useful to introduce averaged models which remove this time-scale. However, depending on other parameters of the plasma, different starting models for the asymptotic analysis may be considered. We introduce here a generic framework for our analysis which ts many of the possible regimes and apply it in particular to justify the finite Larmor radius approximation both in the linear case and in the nonlinear case in the plane transverse to the magnetic field.
引用
收藏
页码:1227 / 1247
页数:21
相关论文
共 25 条
[1]  
Alexandre R, 1997, ASYMPTOTIC ANAL, V15, P229
[2]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[3]   HOMOGENIZATION OF 1ST ORDER HYPERBOLIC-EQUATIONS AND APPLICATION TO MISCIBLE FLOW IN POROUS-MEDIA [J].
AMIRAT, Y ;
HAMDACHE, K ;
ZIANI, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1989, 6 (05) :397-417
[4]   HOMOGENIZATION OF PARAMETRISED FAMILIES OF HYPERBOLIC PROBLEMS [J].
AMIRAT, Y ;
HAMDACHE, K ;
ZIANI, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 120 :199-221
[5]  
COLIN T, COMMUNICATION
[6]   NON-LINEAR GYROKINETIC EQUATIONS [J].
DUBIN, DHE ;
KROMMES, JA ;
OBERMAN, C ;
LEE, WW .
PHYSICS OF FLUIDS, 1983, 26 (12) :3524-3535
[7]   Homogenisation of transport kinetic equations with oscillating potentials [J].
Frenod, E ;
Hamdache, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :1247-1275
[8]   Finite Larmor radius approximation of the Vlasov equation [J].
Frénod, E ;
Sonnendrücker, E .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (05) :421-426
[9]  
Frénod E, 1998, ASYMPTOTIC ANAL, V18, P193
[10]   Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field [J].
Frénod, E ;
Sonnendrücker, E .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (04) :539-553