On -: K2 for normal surface singularities

被引:3
作者
Chen, H [1 ]
Ishii, S
机构
[1] Zhongshan Univ, Dept Math, Guangzhou, Guangdong, Peoples R China
[2] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 152, Japan
关键词
D O I
10.1142/S0129167X98000294
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show the lower bound of the set of non-aero -K-2 for normal surface singularities establishing that this set has no accumulation points from above. We also prove that every accumulation point from below is a rational number and every positive integer is an accumulation point. Every rational number can be an accumulation point module Z. We determine all accumulation points in [0, 1]. If we fix the value -K-2, then the values of p(g), p(a), mult, embdim and the numerical indices are bounded, while the numbers of the exceptional curves are not bounded.
引用
收藏
页码:653 / 668
页数:16
相关论文
共 13 条
[1]   LOCAL RINGS OF HIGH EMBEDDING DIMENSION [J].
ABHYANKAR, SS .
AMERICAN JOURNAL OF MATHEMATICS, 1967, 89 (04) :1073-+
[2]  
Alexeev V., 1994, Internat. J. Math, V5, P779, DOI [10.1142/S0129167X94000395, DOI 10.1142/S0129167X94000395]
[3]  
ALEXEEV V, BOUNDING SINGULAR SU
[4]   ON ISOLATED RATIONAL SINGULARITIES OF SURFACES [J].
ARTIN, M .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (01) :129-&
[5]  
GANTER FM, 1994, PROPERTIES P P GOREN
[6]   RIEMANN-ROCH THEOREM FOR STRONGLY PSEUDOCONVEX MANIFOLDS OF DIMENSION 2 [J].
KATO, M .
MATHEMATISCHE ANNALEN, 1976, 222 (03) :243-250
[7]   2-DIMENSIONAL SINGULARITIES AND DIFFERENTIAL FORMS [J].
KNOLLER, FW .
MATHEMATISCHE ANNALEN, 1973, 206 (03) :205-213
[8]  
Kollar J., 1994, CONT MATH, V162, P261, DOI DOI 10.1090/CONM/162/01538
[9]  
MORALES M, 1997, UPPER BOUND GEOMETRI
[10]  
Morales M., 1983, MONOGRAPHES ENSEIGNE, V31, P191