Chemical genetic engineering of G protein-coupled receptor kinase 2

被引:22
作者
Kenski, DM
Zhang, C
von Zastrow, M
Shokat, KM
机构
[1] Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Chem & Chem Biol Grad Program, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA
关键词
D O I
10.1074/jbc.M507594200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
G protein-coupled receptor kinases (GRKs) play a pivotal role in receptor regulation. Efforts to study the acute effects of GRKs in intact cells have been limited by a lack of specific inhibitors. In the present study we have developed an engineered version of GRK2 that is specifically and reversibly inhibited by the substituted nucleotide analog 1-naphthyl-PP1 (1Na-PP1), and we explored GRK2 function in regulated internalization of the mu-opioid receptor (mu OR). A previously described method that conferred analog sensitivity on various kinases, by introducing a space-creating mutation in the conserved active site, failed when applied to GRK2 because the corresponding mutation (L271G) rendered the mutant kinase (GRK2-as1) catalytically inactive. A sequence homology-based approach was used to design second-site suppressor mutations. A C221V second-site mutation produced a mutant kinase (GRK2-as5) with full functional activity and analog sensitivity as compared with wild-type GRK2 in vitro and in intact cells. The role of GRK2-as5 activity in the membrane trafficking of the mu OR was also characterized. Morphine-induced internalization was completely blocked when GRK2-as5 activity was inhibited before morphine application. However, inhibition of GRK2-as5 during recycling and reinternalization of the mu OR did not attenuate these processes. These results suggest there is a difference in the GRK requirement for initial ligand-induced internalization of a G protein-coupled receptor compared with subsequent rounds of reinternalization.
引用
收藏
页码:35051 / 35061
页数:11
相关论文
共 60 条
[1]  
[Anonymous], BIOENERGETICS ITS TH
[2]  
ARDEN JR, 1995, J NEUROCHEM, V65, P1636
[3]   BETA-ADRENERGIC-RECEPTOR KINASE - PRIMARY STRUCTURE DELINEATES A MULTIGENE FAMILY [J].
BENOVIC, JL ;
DEBLASI, A ;
STONE, WC ;
CARON, MG ;
LEFKOWITZ, RJ .
SCIENCE, 1989, 246 (4927) :235-240
[4]   A chemical switch for inhibitor-sensitive alleles of any protein kinase [J].
Bishop, AC ;
Ubersax, JA ;
Petsch, DT ;
Matheos, DP ;
Gray, NS ;
Blethrow, J ;
Shimizu, E ;
Tsien, JZ ;
Schultz, PG ;
Rose, MD ;
Wood, JL ;
Morgan, DO ;
Shokat, KM .
NATURE, 2000, 407 (6802) :395-401
[5]   Design of allele-specific inhibitors to probe protein kinase signaling [J].
Bishop, AC ;
Shah, K ;
Liu, Y ;
Witucki, L ;
Kung, CY ;
Shokat, KM .
CURRENT BIOLOGY, 1998, 8 (05) :257-266
[6]   Generation of monospecific nanomolar tyrosine kinase inhibitors via a chemical genetic approach [J].
Bishop, AC ;
Kung, CY ;
Shah, K ;
Witucki, L ;
Shokat, KM ;
Liu, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (04) :627-631
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   A kinase sequence database: sequence alignments and family assignment [J].
Buzko, O ;
Shokat, KM .
BIOINFORMATICS, 2002, 18 (09) :1274-1275
[9]   A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor [J].
Cao, TT ;
Deacon, HW ;
Reczek, D ;
Bretscher, A ;
von Zastrow, M .
NATURE, 1999, 401 (6750) :286-290
[10]   G-protein-coupled receptors: turn-ons and turn-offs [J].
Carman, CV ;
Benovic, JL .
CURRENT OPINION IN NEUROBIOLOGY, 1998, 8 (03) :335-344