Folding a protein in a computer:: An atomic description of the folding/unfolding of protein A

被引:291
作者
García, AE
Onuchic, JN
机构
[1] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
关键词
D O I
10.1073/pnas.2335541100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the folding mechanism of a three-helix bundle protein at atomic resolution, including effects of explicit water. Using replica exchange molecular dynamics we perform enough sampling over a wide range of temperatures to obtain the free energy, entropy, and enthalpy surfaces as a function of structural reaction coordinates. Simulations were started from different configurations covering the folded and unfolded states. Because many transitions between all minima at the free energy surface are observed, a quantitative determination of the free energy barriers and the ensemble of configurations associated with them is now possible. The kinetic bottlenecks for folding can be determined from the thermal ensembles of structures on the free energy barriers, provided the kinetically determined transition-state ensembles are similar to those determined from free energy barriers. A mechanism incorporating the interplay among backbone ordering, side-chain packing, and desolvation arises from these calculations. Large phi values arise not only from native contacts, which mostly form at the transition state, but also from contacts already present in the unfolded state that are partially destroyed at the transition.
引用
收藏
页码:13898 / 13903
页数:6
相关论文
共 45 条
[1]   Staphylococcal protein A: Unfolding pathways, unfolded states, and differences between the B and E domains [J].
Alonso, DOV ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :133-138
[2]   Absence of a stable intermediate on the folding pathway of protein A [J].
Bai, YW ;
Karimi, A ;
Dyson, HJ ;
Wright, PE .
PROTEIN SCIENCE, 1997, 6 (07) :1449-1457
[3]  
BALDWIN RL, 1995, J BIOMOL NMR, V5, P103
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   Characterization of the folding kinetics of a three-helix bundle protein via a minimalist Langevin model [J].
Berriz, GF ;
Shakhnovich, EI .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 310 (03) :673-685
[6]   High populations of non-native structures in the denatured state are compatible with the formation of the native folded state [J].
Blanco, FJ ;
Serrano, L ;
Forman-Kay, JD .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 284 (04) :1153-1164
[7]   FIRST-PRINCIPLES CALCULATION OF THE FOLDING FREE-ENERGY OF A 3-HELIX BUNDLE PROTEIN [J].
BOCZKO, EM ;
BROOKS, CL .
SCIENCE, 1995, 269 (5222) :393-396
[8]   SPIN-GLASSES AND THE STATISTICAL-MECHANICS OF PROTEIN FOLDING [J].
BRYNGELSON, JD ;
WOLYNES, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7524-7528
[9]   Protein folding mediated by solvation:: Water expulsion and formation of the hydrophobic core occur after the structural collapse [J].
Cheung, MS ;
García, AE ;
Onuchic, JN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) :685-690
[10]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197