Chemistry and biology of DNA methyltransferases

被引:68
作者
Ahmad, I [1 ]
Rao, DN [1 ]
机构
[1] INDIAN INST SCI, DEPT BIOCHEM, BANGALORE 560012, KARNATAKA, INDIA
关键词
DNA-protein interactions; DNA methyltransferase; sequence comparison; base flipping; catalytic mechanism;
D O I
10.3109/10409239609108722
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recognition of a specific DNA sequence by a protein is probably the best example of macromolecular interactions leading to various events. It is a prerequisite to understanding the basis of protein-DNA interactions to obtain a better insight into fundamental processes such as transcription, replication, repair, and recombination. DNA methyltransferases with varying sequence specificities provide an excellent model system for understanding the molecular mechanism of specific DNA recognition. Sequence comparison of cloned genes, along with mutational analyses and recent crystallographic studies, have clearly defined the functions of various conserved motifs. These enzymes access their target base in an elegant manner by flipping it out of the DNA double helix. The drastic protein-induced DNA distortion, first reported for HhaI DNA methyltransferase, appears to be a common mechanism employed by various proteins that need to act on bases. A remarkable feature of the catalytic mechanism of DNA (cytosine-5) methyltransferases is the ability of these enzymes to induce deamination of the target cytosine in the absence of S-adenosyl-L-methionine or its analogs. The enzyme-catalyzed deamination reaction is postulated to be the major cause of mutational hotspots at CpG islands responsible for various human genetic disorders. Methylation of adenine residues in Escherichia coli is known to regulate various processes such as transcription, replication, repair, recombination, transposition, and phage packaging.
引用
收藏
页码:361 / 380
页数:20
相关论文
共 111 条
[1]   DNA METHYLATION - THE EFFECT OF MINOR BASES ON DNA PROTEIN INTERACTIONS [J].
ADAMS, RLP .
BIOCHEMICAL JOURNAL, 1990, 265 (02) :309-320
[2]   INTERACTION OF ECOP151 DNA METHYLTRANSFERASE WITH OLIGONUCLEOTIDES CONTAINING THE ASYMMETRIC SEQUENCE 5'-CAGCAG-3' [J].
AHAMD, I ;
RAO, DN .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 242 (04) :378-388
[3]   Functional analysis of conserved motifs in EcoP15I DNA methyltransferase [J].
Ahmad, I ;
Rao, DN .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 259 (02) :229-240
[4]   PHOTOLABELING OF THE ECOP15 DNA METHYLTRANSFERASE WITH S-ADENOSYL-L-METHIONINE [J].
AHMAD, I ;
RAO, DN .
GENE, 1994, 142 (01) :67-71
[5]   DNA RECOGNITION BY THE ECOP15I AND ECOPI MODIFICATION METHYLTRANSFERASES [J].
AHMAD, I ;
KRISHNAMURTHY, V ;
RAO, DN .
GENE, 1995, 157 (1-2) :143-147
[6]   RESTRICTION ENDONUCLEASES AND MODIFICATION METHYLASES [J].
ANDERSON, JE .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1993, 3 (01) :24-30
[7]   CONSTRUCTION AND USE OF CHIMERIC SPR PHI-3T DNA METHYLTRANSFERASES IN THE DEFINITION OF SEQUENCE RECOGNIZING ENZYME REGIONS [J].
BALGANESH, TS ;
REINERS, L ;
LAUSTER, R ;
NOYERWEIDNER, M ;
WILKE, K ;
TRAUTNER, TA .
EMBO JOURNAL, 1987, 6 (11) :3543-3549
[8]   THE DOUBLE ROLE OF METHYL DONOR AND ALLOSTERIC EFFECTOR OF S-ADENOSYL-METHIONINE FOR DAM METHYLASE OF ESCHERICHIA-COLI [J].
BERGERAT, A ;
GUSCHLBAUER, W .
NUCLEIC ACIDS RESEARCH, 1990, 18 (15) :4369-4375
[9]   DNA METHYLTRANSFERASES [J].
BESTOR, TH ;
VERDINE, GL .
CURRENT OPINION IN CELL BIOLOGY, 1994, 6 (03) :380-389
[10]   REGULATION OF PAP PILIN PHASE VARIATION BY A MECHANISM INVOLVING DIFFERENTIAL DAM METHYLATION STATES [J].
BLYN, LB ;
BRAATEN, BA ;
LOW, DA .
EMBO JOURNAL, 1990, 9 (12) :4045-4054