Distributions of PM2.5 source strengths for cooking from the research triangle park particulate matter panel study

被引:61
作者
Olson, DA [1 ]
Burke, JM [1 ]
机构
[1] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA
关键词
D O I
10.1021/es050359t
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Emission rates, decay rates, and cooking durations are reported from continuous PM2.5 (particulate matter less than 2.5 mu m) concentrations measured using personal DataRam nephelometers (1-min time resolution) from the Research Triangle Park (RTP) PM panel study. The study (n = 37 participants) included monitoring for 7 consecutive days in each of four consecutive seasons (summer 2000 through spring 2001). Cooking episodes (n = 411) were selected using time-activity diaries and criteria for cooking event duration, peak concentration level, and decay curve quality. Averaged across all cooking events, mean source strengths were 36 mg/min (median = 12 mg/min), mean decay rates were 0.27 h(-1)(0.17 h(-1)), and mean cooking durations were 11 min (7 min). Cooking events were further separated into one of seven categories representing cooking method: burned food (oven cooking, toaster, or stovetop cooking), grilling, microwave, toaster oven, frying, oven cooking, and stovetop cooking. The highest mean source strengths were identified from burned food (mean = 470 mg/min), grilling (173 mg/min), and frying (60 mg/ min); differences between both burned food and grilling compared with all remaining cooking methods were statistically significant. Source strengths, decay rates, and cooking durations were also compared by season and typical meal times (8:00 a.m., 12:00 p.m., and 6:00 p.m.); differences were generally not statistically significant for these cases. Mean source strengths using electric appliances were typically a factor of 2 greater than those using gas appliances for identical cooking methods (frying, oven cooking, or stovetop cooking), although in all cases the difference was not statistically significant. Distributions of source strengths and decay rates for cooking events were also compared among study subjects to assess both within- and between-subject variability. Each subject's distribution of source strengths during the study tended to be either lower than the overall study average (and with lower variability) or higher than the overall study average (and with higher variability). No relationships could be found between source strength and either subject characteristics (age, gender, employment status) or home characteristic (daily air exchange rate). The large number of cooking events and the broad range of cooking activities included in this analysis makes the reported distributions of PM2.5 source strengths useful for probabilistic exposure modeling even though the study population was limited.
引用
收藏
页码:163 / 169
页数:7
相关论文
共 50 条
[1]   Relative contribution of outdoor and indoor particle sources to indoor concentrations [J].
Abt, E ;
Suh, HH ;
Catalano, P ;
Koutrakis, P .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (17) :3579-3587
[2]   Characterization of indoor particle sources: A study conducted in the metropolitan Boston area [J].
Abt, E ;
Suh, HH ;
Allen, G ;
Koutrakis, P .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2000, 108 (01) :35-44
[3]   Use of real-time light scattering data to estimate the contribution of infiltrated and indoor-generated particles to indoor air [J].
Allen, R ;
Larson, T ;
Sheppard, L ;
Wallace, L ;
Liu, LJS .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (16) :3484-3492
[4]   Estimated hourly personal exposures to ambient and nonambient particulate matter among sensitive populations in Seattle, Washington [J].
Allen, R ;
Wallace, L ;
Larson, T ;
Sheppard, L ;
Liu, LJS .
JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2004, 54 (09) :1197-1211
[5]   Assessment of indoor fine aerosol contributions from environmental tobacco smoke and cooking with a portable nephelometer [J].
Brauer, M ;
Hirtle, R ;
Lang, B ;
Ott, W .
JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY, 2000, 10 (02) :136-144
[6]   A population exposure model for particulate matter:: case study results for PM2.5 in Philadelphia, PA [J].
Burke, JM ;
Zufall, MJ ;
Özkaynak, H .
JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY, 2001, 11 (06) :470-489
[7]   Performance evaluation of the active-flow personal DataRAM PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements [J].
Chakrabarti, B ;
Fine, PM ;
Delfino, R ;
Sioutas, C .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (20) :3329-3340
[8]  
CLAYTON CA, 1993, J EXPO ANAL ENV EPID, V3, P227
[9]  
Dietz RN., 1982, ENVIRON INT, V8, P419, DOI DOI 10.1016/0160-4120(82)90060-5
[10]   AN ASSOCIATION BETWEEN AIR-POLLUTION AND MORTALITY IN 6 UNITED-STATES CITIES [J].
DOCKERY, DW ;
POPE, CA ;
XU, XP ;
SPENGLER, JD ;
WARE, JH ;
FAY, ME ;
FERRIS, BG ;
SPEIZER, FE .
NEW ENGLAND JOURNAL OF MEDICINE, 1993, 329 (24) :1753-1759