Solving stochastic programs with integer recourse by enumeration: A framework using Grobner basis reductions

被引:58
作者
Schultz, R
Stougie, L
van der Vlerk, MH
机构
[1] Univ Groningen, Dept Econometr, NL-9700 AV Groningen, Netherlands
[2] Univ Leipzig, Inst Math, D-04109 Leipzig, Germany
[3] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
stochastic programming; integer recourse; algorithm; Grobner basis;
D O I
10.1007/BF02680560
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we present a framework for solving stochastic programs with complete integer recourse and discretely distributed right-hand side vector, using Grobner basis methods from computational algebra to solve the numerous second-stage integer programs. Using structural properties of the expected integer recourse function, we prove that under mild conditions an optimal solution is contained in a finite set. Furthermore, we present a basic scheme to enumerate this set and suggest improvements to reduce the number of function evaluations needed. (C) 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:229 / 252
页数:24
相关论文
共 36 条
[1]  
[Anonymous], PORTA POlyhedron Representation Transformation Algorithm
[2]  
Bank B., 1988, PARAMETRIC INTEGER O
[3]   VALUE FUNCTION OF A MIXED INTEGER-PROGRAM .1. [J].
BLAIR, CE ;
JEROSLOW, RG .
DISCRETE MATHEMATICS, 1977, 19 (02) :121-138
[4]  
BUCHBERGER B, 1985, MULTIDIMENSIONAL SYS, V6
[5]  
CAPANI A, 1995, COCOA USERS MANUAL
[6]  
CAROE CC, 1995, L SHAPED DECOMPOSITI
[7]  
CONTI P, 1991, LECT NOTES COMPUT SC, V539, P130
[8]  
COX D, 1982, IDEALS VARIETIES ALG
[9]  
Ermoliev Y, 1988, Numerical techniques for stochastic optimization, P141
[10]   THE MINIMIZATION OF SEMICONTINUOUS FUNCTIONS - MOLLIFIER SUBGRADIENTS [J].
ERMOLIEV, YM ;
NORKIN, VI ;
WETS, RJB .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (01) :149-167