Image representations for visual learning

被引:176
作者
Beymer, D
Poggio, T
机构
[1] MIT, CTR BIOL & COMPUTAT LEARNING, DEPT BRAIN & COGNIT SCI, CAMBRIDGE, MA 02142 USA
[2] MIT, ARTIFICIAL INTELLIGENCE LAB, CAMBRIDGE, MA 02142 USA
关键词
D O I
10.1126/science.272.5270.1905
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computer vision researchers are developing new approaches to object recognition and detection that are based almost directly on images and avoid the use of intermediate three-dimensional models. Many of these techniques depend on a representation of images that induces a linear vector space structure and in principle requires dense feature correspondence. This image representation allows the use of learning techniques for the analysis of images (for computer vision) as well as for the synthesis of images (for computer graphics).
引用
收藏
页码:1905 / 1909
页数:5
相关论文
共 77 条
[1]  
AKAMATSU S, 1992, 11TH IAPR INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, PROCEEDINGS, VOL II, P217, DOI 10.1109/ICPR.1992.201758
[2]  
ANANDAN P, 1996, P IM UND WORKSH PALM
[3]  
[Anonymous], P 1 INT C COMP VIS L
[4]  
[Anonymous], P EUR C COMP VIS ECC
[5]  
Atick JJ, 1996, NETWORK-COMP NEURAL, V7, P1, DOI [10.1088/0954-898X/7/1/002, 10.1080/0954898X.1996.11978652]
[6]  
AVIDAN S, 1996, CIS9602 TECHN
[7]  
BACHELDER I, 1991, THESIS MIT
[8]  
BEYMER D, 1995, FIFTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, PROCEEDINGS, P500, DOI 10.1109/ICCV.1995.466898
[9]  
BEYMER D, 1993, 1431 MIT ART INT LAB
[10]  
BEYMER DI, 1995, 1537 MIT ART INT LAB