L-shaped decomposition of two-stage stochastic programs with integer recourse

被引:123
作者
Caroe, CC [1 ]
Tind, J [1 ]
机构
[1] Univ Copenhagen, Dept Operat Res, DK-2100 Copenhagen O, Denmark
关键词
stochastic programming; integer programming; Benders decomposition; general duality theory;
D O I
10.1007/BF02680570
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider two-stage stochastic programming problems with integer recourse. The L-shaped method of stochastic linear programming is generalized to these problems by using generalized Benders decomposition. Nonlinear feasibility and optimality cuts are determined via general duality theory and can be generated when the second stage problem is solved by standard techniques. Finite convergence of the method is established when Gomory's fractional cutting plane algorithm or a branch-and-bound algorithm is applied. (C) 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.
引用
收藏
页码:451 / 464
页数:14
相关论文
共 14 条
[1]   A MULTICUT ALGORITHM FOR 2-STAGE STOCHASTIC LINEAR-PROGRAMS [J].
BIRGE, JR ;
LOUVEAUX, FV .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1988, 34 (03) :384-392
[2]   THE VALUE FUNCTION OF AN INTEGER-PROGRAM [J].
BLAIR, CE ;
JEROSLOW, RG .
MATHEMATICAL PROGRAMMING, 1982, 23 (03) :237-273
[3]   CUTTING-PLANE THEORY - ALGEBRAIC METHODS [J].
JEROSLOW, R .
DISCRETE MATHEMATICS, 1978, 23 (02) :121-150
[4]   THE INTEGER L-SHAPED METHOD FOR STOCHASTIC INTEGER PROGRAMS WITH COMPLETE RECOURSE [J].
LAPORTE, G ;
LOUVEAUX, FV .
OPERATIONS RESEARCH LETTERS, 1993, 13 (03) :133-142
[5]  
Nemhauser GL, 1988, INTEGER COMBINATORIA
[6]   SENSITIVITY ANALYSIS FOR BRANCH AND BOUND INTEGER PROGRAMMING [J].
SCHRAGE, L ;
WOLSEY, L .
OPERATIONS RESEARCH, 1985, 33 (05) :1008-1023
[7]   ON STRUCTURE AND STABILITY IN STOCHASTIC PROGRAMS WITH RANDOM TECHNOLOGY MATRIX AND COMPLETE INTEGER RECOURSE [J].
SCHULTZ, R .
MATHEMATICAL PROGRAMMING, 1995, 70 (01) :73-89
[8]  
Schultz R., 1996, Stat. Neerl., V50, P404, DOI [10.1111/j.1467-9574.1996.tb01506.x,arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9574, DOI 10.1111/J.1467-9574.1996.TB01506.X,ARXIV:HTTPS://ONLINELIBRARY.WILEY.COM/DOI/PDF/10.1111/J.1467-9574]
[9]  
STOUGIE L, 1987, CWI TRACT, V37
[10]   AN ELEMENTARY SURVEY OF GENERAL DUALITY-THEORY IN MATHEMATICAL-PROGRAMMING [J].
TIND, J ;
WOLSEY, LA .
MATHEMATICAL PROGRAMMING, 1981, 21 (03) :241-261