Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: Control by the supply of mitochondria with respiratory substrates

被引:229
作者
Aubert, S
Gout, E
Bligny, R
MartyMazars, D
Barrieu, F
Alabouvette, J
Marty, F
Douce, R
机构
[1] CEA GRENOBLE,DEPT BIOL MOLEC & STRUCT,LAB RESONANCE MAGNET BIOL & MED,DBMS,PCV,F-38054 GRENOBLE 9,FRANCE
[2] CEA GRENOBLE,PHYSIOL CELLULAIRE VEGETALE LAB,CNRS,URA 576,F-38054 GRENOBLE 9,FRANCE
[3] UNIV BOURGOGNE,LAB PHYTOBIOL CELLULAIRE,F-21004 DIJON,FRANCE
关键词
D O I
10.1083/jcb.133.6.1251
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Autophagy triggered by carbohydrate starvation was characterized at both biochemical and structural levels, with the aim to identify reliable and easily detectable marker(s) and to investigate the factors controlling this process. Incubation of suspension cells in sucrose-free culture medium triggered a marked degradation of the membrane polar lipids, including phospholipids and galactolipids. In contrast, the total amounts of sterols, which are mainly associated with plasmalemma and tonoplast membranes, remained constant. In particular, phosphatidylcholine decreased, whereas phosphodiesters including glycerylphosphorylcholine transiently increased, and phosphorylcholine (P-Cho) steadily accumulated. P-Cho exhibits a remarkable metabolic inertness and therefore can be used as a reliable biochemical marker reflecting the extent of plant cell autophagy. Indeed, whenever P-Cho accumulated, a massive regression of cytoplasm was noticed using EM. Double membrane-bounded vacuoles were formed in the peripheral cytoplasm during sucrose starvation and were eventually expelled into the central vacuole, which increased in volume and squeezed the thin layer of cytoplasm spared by autophagy. The biochemical marker P-Cho was used to investigate the factors controlling autophagy. P-Cho did not accumulate when sucrose was replaced by glycerol or by pyruvate as carbon sources. Both compounds entered the cells and sustained normal rates of respiration, No recycling back to the hexose phosphates was observed, and cells were rapidly depleted in sugars and hexose phosphates, without any sign of autophagy. On the contrary, when pyruvate (or glycerol) was removed from the culture medium, P-Cho accumulated without a lag phase, in correlation with the formation of autophagic vacuoles, These results strongly suggest that the supply of mitochondria with respiratory substrates, and not the decrease of sucrose and hexose phosphates, controls the induction of autophagy in plant cells starved in carbohydrates.
引用
收藏
页码:1251 / 1263
页数:13
相关论文
共 63 条
[1]  
APREES T, 1990, PLANT PHYSL BIOCH MO, P106
[2]   CHARACTERIZATION OF ACETATE AND PYRUVATE METABOLISM IN SUSPENSION-CULTURES OF ZEA-MAYS BY C-13 NMR-SPECTROSCOPY [J].
ASHWORTH, DJ ;
LEE, RY ;
ADAMS, DO .
PLANT PHYSIOLOGY, 1987, 85 (02) :463-468
[3]  
AUBERT S, 1994, J BIOL CHEM, V269, P21420
[4]   ULTRASTRUCTURAL ANALYSIS OF THE AUTOPHAGIC PROCESS IN YEAST - DETECTION OF AUTOPHAGOSOMES AND THEIR CHARACTERIZATION [J].
BABA, M ;
TAKESHIGE, K ;
BABA, N ;
OHSUMI, Y .
JOURNAL OF CELL BIOLOGY, 1994, 124 (06) :903-913
[5]  
BLIGNY R, 1987, METHOD ENZYMOL, V148, P3
[6]  
BLIGNY R, 1989, J BIOL CHEM, V264, P4888
[7]  
BROUQUISSE R, 1992, PLANTA, V188, P384, DOI 10.1007/BF00192806
[8]  
CARDE JP, 1987, METHOD ENZYMOL, V148, P599
[9]  
CHAN MT, 1994, J BIOL CHEM, V269, P17635
[10]   EXPRESSION OF ALPHA-AMYLASES, CARBOHYDRATE-METABOLISM, AND AUTOPHAGY IN CULTURED RICE CELLS IS COORDINATELY REGULATED BY SUGAR NUTRIENT [J].
CHEN, MH ;
LIU, LF ;
CHEN, YR ;
WU, HK ;
YU, SM .
PLANT JOURNAL, 1994, 6 (05) :625-636