Colocalization prostacyclin (PGI2) synthase-caveolin-1 in endothelial cells and new roles for PGI2 in angiogenesis

被引:65
作者
Spisni, E
Griffoni, C
Santi, S
Riccio, M
Marulli, R
Bartolini, G
Toni, M
Ullrich, V
Tomasi, V
机构
[1] Univ Bologna, Dept Expt Biol, I-40126 Bologna, Italy
[2] CNR, Inst Cytomorphol, Bologna, Italy
[3] Univ Konstanz, Fac Biol, Constance, Germany
关键词
PGI2; synthase; caveolin-1; caveolae; angiogenesis; confocal microscopy; antisense oligonucleotides; GST fusion protein;
D O I
10.1006/excr.2001.5198
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In vascular cells, prostacyclin (PGI2) synthase (PGI2s) has been localized in the endoplasmic reticulum of endothelial cells and in the nuclear and plasma membrane of smooth muscle cells. In human umbilical vein endothelial (HUVE) cells, we detected the enzyme in abundant cytoplasmic vesicles apparently originating from the plasma membrane and similar to those stained by gold-albumin, which interacts with a caveolar receptor. This prompted us to try a direct confocal microscopy approach aimed at colocalizing gold-albumin, caveolin-1, and PGI2 synthase. Moreover, the staining of HUVE cells with an anti-BiP7Grp78 antibody (a marker of endoplasmic reticulum) shows a perinuclear localization, sharply separated from PGI2 synthase localization. The results indicate that more than 80% of the enzyme resides in cellular sites costaining with caveolin-1 antibody and gold-albumin. This evidence was confirmed by the demonstration that PGI2 synthase and caveolin-1 coimmunoprecipitate in HUVE cell lysates and that they are associated to detergent-insoluble membrane domains in the same low-density fractions of a sucrose gradient. In addition, depletion of cellular cholesterol by mevalonate and methyl-beta -cyclodextrin leads to the shift of PGI2 synthase and caveolin-1 to higher density fractions of the gradient. Biochemical evidence about colocalization was supported by the use of a fusion protein glutathione S-transferase (GST)/caveolin-1, which retained either PGI2s purified from ram seminal vesicles or PGI2s present in HUVE cell lysates. Binding of PGI2s to caveolin "scaffolding domain" and to C-terminal region was deduced by using full-length GST-Cav-1, GST-Cav 61-101, and GST C- and N-terminal fusion proteins. A double approach based on the usage of filipin as a specific caveolae-disrupting agent and antisense oligonucleotides targeting PGI2 synthase mRNA suggests that the production of PGI2 in caveolae is likely to be connected to the regulation of angiogenesis, at least in vitro. (C) 2001 Academic Press.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 66 条
[1]   Tyrosine phosphorylation of caveolin-1 in the endothelium [J].
Aoki, T ;
Nomura, R ;
Fujimoto, T .
EXPERIMENTAL CELL RESEARCH, 1999, 253 (02) :629-636
[2]   POSTTRANSCRIPTIONAL REGULATION OF THROMBOXANE A2 SYNTHASE IN U937 CELLS [J].
BELLETTI, B ;
SPISNI, E ;
BARTOLINI, G ;
ORLANDI, M ;
TOMASI, V .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 209 (03) :901-906
[3]   Arachidonic acid is preferentially metabolized by cyclooxygenase-2 to prostacyclin and prostaglandin E2 [J].
Brock, TG ;
McNish, RW ;
Peters-Golden, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (17) :11660-11666
[4]   SORTING OF GPI-ANCHORED PROTEINS TO GLYCOLIPID-ENRICHED MEMBRANE SUBDOMAINS DURING TRANSPORT TO THE APICAL CELL-SURFACE [J].
BROWN, DA ;
ROSE, JK .
CELL, 1992, 68 (03) :533-544
[5]   In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation [J].
Bucci, M ;
Gratton, JP ;
Rudic, RD ;
Acevedo, L ;
Roviezzo, F ;
Cirino, G ;
Sessa, WC .
NATURE MEDICINE, 2000, 6 (12) :1362-1367
[6]   Rate of vasoconstrictor prostanoids released by endothelial cells depends on cyclooxygenase-2 expression and prostaglandin I synthase activity [J].
Camacho, M ;
Löpez-Belmonte, J ;
Vila, L .
CIRCULATION RESEARCH, 1998, 83 (04) :353-365
[7]   Identification of peptide and protein ligands for the caveolin-scaffolding domain - Implications for the interaction of caveolin with caveolae-associated proteins [J].
Couet, J ;
Li, SW ;
Okamoto, T ;
Ikezu, T ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (10) :6525-6533
[8]   Vascular endothelial growth factor induces endothelial fenestrations in vitro [J].
Esser, S ;
Wolburg, K ;
Wolburg, H ;
Breier, G ;
Kurzchalia, T ;
Risau, W .
JOURNAL OF CELL BIOLOGY, 1998, 140 (04) :947-959
[9]   VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells [J].
Feng, YY ;
Venema, VJ ;
Venema, RC ;
Tsai, N ;
Caldwell, RB .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 256 (01) :192-197
[10]   Endothelial nitric oxide synthase targeting to caveolae - Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells [J].
Feron, O ;
Belhassen, L ;
Kobzik, L ;
Smith, TW ;
Kelly, RA ;
Michel, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (37) :22810-22814