Processing bodies require RNA for assembly and contain nontranslating mRNAs

被引:546
作者
Teixeira, D
Sheth, U
Valencia-Sanchez, MA
Brengues, M
Parker, R [1 ]
机构
[1] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA
[2] Univ Arizona, Howard Hughes Med Inst, Tucson, AZ 85721 USA
关键词
decapping; P-bodies; stress; translation;
D O I
10.1261/rna.7258505
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent experiments have defined cytoplasmic foci, referred to as processing bodies (P-bodies), wherein mRNA decay factors are concentrated and where mRNA decay can occur. However, the physical nature of P-bodies, their relationship to translation, and possible roles of P-bodies in cellular responses remain unclear. We describe four properties of yeast P-bodies that indicate that P-bodies are dynamic structures that contain nontranslating mRNAs and function during cellular responses to stress. First, in vivo and in vitro analysis indicates that P-bodies are dependent on RNA for their formation. Second, the number and size of P-bodies vary in response to glucose deprivation, osmotic stress, exposure to ultraviolet light, and the stage of cell growth. Third, P-bodies vary with the status of the cellular translation machinery. Inhibition of translation initiation by mutations, or cellular stress, results in increased P-bodies. In contrast, inhibition of translation elongation, thereby trapping the mRNA in polysomes, leads to dissociation of P-bodies. Fourth, multiple translation factors and ribosomal proteins are lacking from P-bodies. These results suggest additional biological roles of P-bodies in addition to being sites of mRNA degradation.
引用
收藏
页码:371 / 382
页数:12
相关论文
共 46 条
[1]   The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex [J].
Anderson, JSJ ;
Parker, R .
EMBO JOURNAL, 1998, 17 (05) :1497-1506
[2]  
Anderson P, 2002, J CELL SCI, V115, P3227
[3]   Glucose depletion rapidly inhibits translation initiation in yeast [J].
Ashe, MP ;
De Long, SK ;
Sachs, AB .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (03) :833-848
[4]   A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates [J].
Bashkirov, VI ;
Scherthan, H ;
Solinger, JA ;
Buerstedde, JM ;
Heyer, WD .
JOURNAL OF CELL BIOLOGY, 1997, 136 (04) :761-773
[5]  
BEELMAN CA, 1994, J BIOL CHEM, V269, P9687
[6]   A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity [J].
Birrell, GW ;
Giaever, G ;
Chu, AM ;
Davis, RW ;
Brown, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (22) :12608-12613
[7]   Pre-mRNA processing factors are required for nuclear export [J].
Brodsky, AS ;
Silver, PA .
RNA, 2000, 6 (12) :1737-1749
[8]   Eukaryotic mRNA decapping [J].
Coller, J ;
Parker, R .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :861-890
[9]   The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes [J].
Coller, JM ;
Tucker, M ;
Sheth, U ;
Valencia-Sanchez, MA ;
Parker, R .
RNA, 2001, 7 (12) :1717-1727
[10]   Cytoplasmic foci are sites of mRNA decay in human cells [J].
Cougot, N ;
Babajko, S ;
Séraphin, B .
JOURNAL OF CELL BIOLOGY, 2004, 165 (01) :31-40