Controlled delivery of vascular endothelial growth factor promotes neovascularization and maintains limb function in a rabbit model of ischemia

被引:51
作者
Hopkins, SP
Bulgrin, JP
Sims, RL
Bowman, B
Donovan, DL
Schmidt, SP
机构
[1] Summa Hlth Syst, Div Surg Res, Akron, OH 44304 USA
[2] Summa Hlth Syst, Dept Surg, Akron, OH USA
[3] Akron Gen Med Ctr, Dept Surg, Akron, OH USA
关键词
D O I
10.1016/S0741-5214(98)70269-1
中图分类号
R61 [外科手术学];
学科分类号
摘要
Purpose: Vascular endothelial growth factor (VEGF) modulates nem blood vessel development and growth and has been suggested as a potential therapeutic agent that could alleviate debilitating claudication in patients. The objective of this study was to determine whether controlled, local delivery of a low dose of VEGF from an osmotic pump could promote neovascularization, limb perfusion,, and functional improvements in the hind limbs of rabbits rendered partially ischemic by surgery. The effects of VEGF were compared with those of the vasodilator nitroglycerin (NTG) and to saline administered similarly. Methods: Thirty rabbits were randomly assigned to either VEGF (n = 10), NTG (n = 10), or saline (n = 10) treatment groups. Partial ischemia was induced in each left hind limb by surgical ligation of the common and superficial femoral arteries, leaving the internal iliac artery intact, The right limb of each animal served as a nonischemic control. Immediately after vessel ligations, a 28-day osmotic pump was implanted to deliver VEGF (0.22 mu g/kg/day), NTG (17.8 mu g/kg/day), or saline solution into the common iliac artery just proximal to the ligation site. Comparative vascularity between ischemic and nonischemic limbs within treatment groups and between groups was evaluated by (1) capillary counts from representative fields of hematoxylin and eosin stained muscle tissue taken from hind limbs at day 40; (2) digitized arteriograms of ischemic legs at day 40, which were used to quantify the complexity of vascular branching (fractal dimension index) and the total extent of vascularization (vascular density index); (3) measuring capillary refill rimes in ischemic limbs; and (4) observations of functional and trophic changes iu ischemic limbs. Statistical differences between treatment groups were evaluated by one-way ANOVA. Results: Complexity of vascular branching and vascular density were significantly greater (p < 0.001) in VEGF-treated ischemic limbs compared with NTG- and saline-treated ischemic limbs. By postoperation day 14, all VEGF-treated ischemic limbs had restored capillary refill (p < 0.001), new hair growth, and greatly improved limb function and appearance. Saline-treated limbs exhibited ischemic changes, with poor capillary refill and negligible limb function. Capillary refill in NTG-treated ischemic limbs did not differ significantly from saline-treated limbs. Ischemic VEGF-treated limbs had significantly more capillaries compared with both ischemic and nonischemic Limbs in saline-treated animals (p < 0.05). Ischemic NTG-treated limbs also had significantly more capillaries compared with ischemic limbs in saline-treated animals (p < 0.05). Because of high variability, however, capillary counts in VEGF-treated ischemic limbs did not differ significantly from those of contralateral nonischemic limbs, or from capillary counts in either ischemic or nonischemic limbs of NTG-treated rabbits.
引用
收藏
页码:886 / 895
页数:10
相关论文
共 27 条
[1]   ENHANCED ANGIOGENESIS AND GROWTH OF COLLATERALS BY INVIVO ADMINISTRATION OF RECOMBINANT BASIC FIBROBLAST GROWTH-FACTOR IN A RABBIT MODEL OF ACUTE LOWER-LIMB ISCHEMIA - DOSE-RESPONSE EFFECT OF BASIC FIBROBLAST GROWTH-FACTOR [J].
BAFFOUR, R ;
BERMAN, J ;
GARB, JL ;
RHEE, SW ;
KAUFMAN, J ;
FRIEDMANN, P .
JOURNAL OF VASCULAR SURGERY, 1992, 16 (02) :181-191
[2]   Arterial versus venous metabolism of nitroglycerin to nitric oxide: A possible explanation of organic nitrate venoselectivity [J].
Bauer, JA ;
Fung, HL .
JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 1996, 28 (03) :371-374
[3]   RECOVERY OF DISTURBED ENDOTHELIUM-DEPENDENT FLOW IN THE COLLATERAL-PERFUSED RABBIT ISCHEMIC HINDLIMB AFTER ADMINISTRATION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR [J].
BAUTERS, C ;
ASAHARA, T ;
ZHENG, LP ;
TAKESHITA, S ;
BUNTING, S ;
FERRARA, N ;
SYMES, JF ;
ISNER, JM .
CIRCULATION, 1995, 91 (11) :2802-2809
[4]  
Chatelard P, 1996, J CARDIOVASC SURG, V37, P67
[5]  
Claffey KP, 1996, CANCER RES, V56, P172
[6]   Hypoxia regulates the expression of vascular permeability factor vascular endothelial growth factor (VPF/VEGF) and its receptors in human skin [J].
Detmar, M ;
Brown, LF ;
Berse, B ;
Jackman, RW ;
Elicker, BM ;
Dvorak, HF ;
Claffey, KP .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 1997, 108 (03) :263-268
[7]   The biology of vascular endothelial growth factor [J].
Ferrara, N ;
DavisSmyth, T .
ENDOCRINE REVIEWS, 1997, 18 (01) :4-25
[8]   THE ROLE OF VASCULAR ENDOTHELIAL GROWTH-FACTOR IN PATHOLOGICAL ANGIOGENESIS [J].
FERRARA, N .
BREAST CANCER RESEARCH AND TREATMENT, 1995, 36 (02) :127-137
[9]   MOLECULAR AND BIOLOGICAL PROPERTIES OF THE VASCULAR ENDOTHELIAL GROWTH-FACTOR FAMILY OF PROTEINS [J].
FERRARA, N ;
HOUCK, K ;
JAKEMAN, L ;
LEUNG, DW .
ENDOCRINE REVIEWS, 1992, 13 (01) :18-32
[10]   ANGIOGENIC FACTORS [J].
FOLKMAN, J ;
KLAGSBRUN, M .
SCIENCE, 1987, 235 (4787) :442-447