Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray

被引:135
作者
Bertani, N
Malatesta, P
Volpi, G
Sonego, P
Perris, R
机构
[1] Univ Parma, Dept Evolutionary & Funct Biol, I-43100 Parma, Italy
[2] CRO IRCCS, Natl Canc Inst, Div Expt Oncol 2, I-33081 Aviano, Italy
关键词
bone-marrow-derived stem cells; neurogenesis; transdifferentiation;
D O I
10.1242/jcs.02511
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The possibility of generating neural cells from human bone-marrow-derived mesenchymal stem cells (hMSCs) by simple in vitro treatments is appealing both conceptually and practically. However, whether phenotypic modulations observed after chemical manipulation of such stem cells truly represent a genuine trans-lineage differentiation remains to be established. We have re-evaluated the effects of a frequently reported biochemical approach, based on treatment with butylated hydroxyanisole and dimethylsulphoxide, to bring about such phenotypic conversion by monitoring the morphological changes induced by the treatment in real time, by analysing the expression of phenotype-specific protein markers and by assessing the modulation of transcriptome. Video time-lapse microscopy showed that conversion of mesenchymal stem cells to a neuron-like morphology could be reproduced. in normal primary fibroblasts as well as mimicked by addition of drugs eliciting cytoskeletal collapse and disruption of focal adhesion contacts. Analysis of markers revealed that mesenchymal stem cells constitutively expressed multi-lineage traits, including several pertaining to the neural one. However, the applied 'neural induction' protocol neither significantly modulated the expression of such markers, nor induced de novo translation of other neural-specific proteins. Similarly, global expression profiling of over 21,000 genes demonstrated that gene transcription was poorly affected. Most strikingly, we found that the set of genes whose expression was altered by the inductive treatment did not match those sets of genes differentially expressed when comparing untreated mesenchymal stem cells and immature neural tissues. Conversely, by comparing these gene expression profiles with that obtained from comparisons between the same cells and an unrelated non-neural organ, such as liver, we found that the adopted neural induction protocol was no more effective in redirecting human mesenchymal stem cells toward a neural phenotype than toward an endodermal hepatic pathway.
引用
收藏
页码:3925 / 3936
页数:12
相关论文
共 65 条
[1]   Cell differentiation - Hepatocytes from nonhepatic adult stem cells [J].
Alison, MR ;
Poulsom, R ;
Jeffery, R ;
Dhillon, AP ;
Quaglia, A ;
Jacob, J ;
Novelli, M ;
Prentice, G ;
Williamson, J ;
Wright, NA .
NATURE, 2000, 406 (6793) :257-257
[2]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[3]   The evolving concept of a stem cell: Entity or function? [J].
Blau, HM ;
Brazelton, TR ;
Weimann, JM .
CELL, 2001, 105 (07) :829-841
[4]   Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells [J].
Colter, DC ;
Sekiya, I ;
Prockop, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (14) :7841-7845
[5]  
Conget PA, 1999, J CELL PHYSIOL, V181, P67, DOI 10.1002/(SICI)1097-4652(199910)181:1<67::AID-JCP7>3.0.CO
[6]  
2-C
[7]   Mesenchymal stem cells: Biology and potential clinical uses [J].
Deans, RJ ;
Moseley, AB .
EXPERIMENTAL HEMATOLOGY, 2000, 28 (08) :875-884
[8]   In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP [J].
Deng, WW ;
Obrocka, M ;
Fischer, I ;
Prockop, DJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 282 (01) :148-152
[9]   Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation [J].
Dezawa, M ;
Kanno, H ;
Hoshino, M ;
Cho, H ;
Matsumoto, N ;
Itokazu, Y ;
Tajima, N ;
Yamada, H ;
Sawada, H ;
Ishikawa, H ;
Mimura, T ;
Kitada, M ;
Suzuki, Y ;
Ide, C .
JOURNAL OF CLINICAL INVESTIGATION, 2004, 113 (12) :1701-1710
[10]   STROMAL CELLS FROM HUMAN LONG-TERM MARROW CULTURES ARE MESENCHYMAL CELLS THAT DIFFERENTIATE FOLLOWING A VASCULAR SMOOTH-MUSCLE DIFFERENTIATION PATHWAY [J].
GALMICHE, MC ;
KOTELIANSKY, VE ;
BRIERE, J ;
HERVE, P ;
CHARBORD, P .
BLOOD, 1993, 82 (01) :66-76