Mutations causing neurodegeneration in Caenorhabditis elegans drastically alter the pH sensitivity and inactivation of the mammalian H+-gated Na+ channel MDEG1

被引:83
作者
Champigny, G [1 ]
Voilley, N [1 ]
Waldmann, R [1 ]
Lazdunski, M [1 ]
机构
[1] CNRS, Inst Pharmacol Mol & Cellulaire, UPR 411, F-06560 Valbonne, France
关键词
D O I
10.1074/jbc.273.25.15418
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mammalian degenerin MDEG1 belongs to the nematode degenerin/epithelial Na+ channel superfamily. It is constitutively activated by the same mutations that cause gain-of-function of the Caenorhabditis elegans degenerins and neurodegeneration. ASIC and DRASIC, which were recently cloned, are structural homologues of MDEG1 and behave as H+-gated cation channels, MDEG1 is also a H+-activated Na+ channel, but it differs from ASIC in its lower pH sensitivity and slower kinetics, In addition to the generation of a constitutive current, mutations in MDEG1 also alter the properties of the H+-gated current. Replacement of Gly-430 in MDEG1 by bulkier amino acids, such as Val, Phe, or Thr, drastically increases the H+ sensitivity of the channel (half-maximal pH (pH(m)) similar to 4.4 for MDEG1, pH(m) similar to 6.7 for the different mutants). Furthermore, these replacements completely suppress the inactivation observed with the wild-type channel and increase the sensitivity of the H+-gated channel to blockade by amiloride by a factor of 10 without modification of its conductance and ionic selectivity. These results as well as those obtained with other mutants clearly indicate that the region surrounding Gly-430, situated just before the second transmembrane segment, is essential for pH sensitivity and gating.
引用
收藏
页码:15418 / 15422
页数:5
相关论文
共 28 条
[1]   PROTON-INDUCED CURRENT IN NEURONAL CELLS [J].
AKAIKE, N ;
UENO, S .
PROGRESS IN NEUROBIOLOGY, 1994, 43 (01) :73-83
[2]   Molecular biology of Na+ absorption [J].
Barbry, P ;
Hofman, P .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 1997, 273 (03) :G571-G585
[3]   The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H+-gated Na+ channel with novel properties [J].
Bassilana, F ;
Champigny, G ;
Waldmann, R ;
deWeille, JR ;
Heurteaux, C ;
Lazdunski, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (46) :28819-28822
[4]   AMILORIDE-SENSITIVE EPITHELIAL NA+ CHANNEL IS MADE OF 3 HOMOLOGOUS SUBUNITS [J].
CANESSA, CM ;
SCHILD, L ;
BUELL, G ;
THORENS, B ;
GAUTSCHI, I ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1994, 367 (6462) :463-467
[5]   EPITHELIAL SODIUM-CHANNEL RELATED TO PROTEINS INVOLVED IN NEURODEGENERATION [J].
CANESSA, CM ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1993, 361 (6411) :467-470
[6]   THE IDENTIFICATION AND SUPPRESSION OF INHERITED NEURODEGENERATION IN CAENORHABDITIS-ELEGANS [J].
CHALFIE, M ;
WOLINSKY, E .
NATURE, 1990, 345 (6274) :410-416
[7]   MODULATION OF PH BY NEURONAL-ACTIVITY [J].
CHESLER, M ;
KAILA, K .
TRENDS IN NEUROSCIENCES, 1992, 15 (10) :396-402
[8]   THE REGULATION AND MODULATION OF PH IN THE NERVOUS-SYSTEM [J].
CHESLER, M .
PROGRESS IN NEUROBIOLOGY, 1990, 34 (05) :401-427
[9]   THE MEC-4 GENE IS A MEMBER OF A FAMILY OF CAENORHABDITIS-ELEGANS GENES THAT CAN MUTATE TO INDUCE NEURONAL DEGENERATION [J].
DRISCOLL, M ;
CHALFIE, M .
NATURE, 1991, 349 (6310) :588-593
[10]   BNaC1 and BNaC2 constitute at new family of human neuronal sodium channels related to degenerins and epithelial sodium channels [J].
GarciaAnoveros, J ;
Derfler, B ;
NevilleGolden, J ;
Hyman, BT ;
Corey, DP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (04) :1459-1464