Characterization of synchronized spatiotemporal states in coupled nonidentical complex Ginzburg-Landau equations

被引:14
作者
Bragard, J [1 ]
Arecchi, FT
Boccaletti, S
机构
[1] Univ Liege, Dept Phys, Liege, Belgium
[2] Ist Nazl Ott, I-50125 Florence, Italy
[3] Univ Florence, Dept Phys, Florence, Italy
[4] Univ Navarra, Dept Phys & Appl Math, E-31080 Pamplona, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2000年 / 10卷 / 10期
关键词
D O I
10.1142/S0218127400001493
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the synchronization of two nonidentical spatially extended fields ruled by one-dimensional Complex Ginzburg-Landau equations, in the two regimes of phase and amplitude turbulence. If two fields display the same dynamical regime, the coupling induces a transition to a completely synchronized state. When, instead, the two fields are in different dynamical regimes, the transition to complete synchronization is mediated by defect synchronization. In the former case, the synchronized manifold is dynamically equivalent to that of the unsynchronized systems, while in the latter case the synchronized state substantially differs from the unsynchronized one, and it is mainly dictated by the synchronization process of the space-time defects.
引用
收藏
页码:2381 / 2389
页数:9
相关论文
共 14 条
[1]   Synchronization of spatiotemporal chaos: The regime of coupled spatiotemporal intermittency [J].
Amengual, A ;
HernandezGarcia, E ;
Montagne, R ;
SanMiguel, M .
PHYSICAL REVIEW LETTERS, 1997, 78 (23) :4379-4382
[2]   Synchronization in nonidentical extended systems [J].
Boccaletti, S ;
Bragard, J ;
Arecchi, FT ;
Mancini, H .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :536-539
[3]   Forcing oscillatory media:: phase kinks vs. synchronization [J].
Chaté, H ;
Pikovsky, A ;
Rudzick, O .
PHYSICA D, 1999, 131 (1-4) :17-30
[4]   Winding number instability in the phase-turbulence regime of the complex Ginzburg-Landau equation [J].
Montagne, R ;
HernandezGarcia, E ;
SanMiguel, M .
PHYSICAL REVIEW LETTERS, 1996, 77 (02) :267-270
[5]   Generalized synchronization of spatiotemporal chemical chaos [J].
Parmananda, P .
PHYSICAL REVIEW E, 1997, 56 (02) :1595-1598
[6]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824
[7]   Synchronization in a population of globally coupled chaotic oscillators [J].
Pikovsky, AS ;
Rosenblum, MG ;
Kurths, J .
EUROPHYSICS LETTERS, 1996, 34 (03) :165-170
[8]   Transition to phase synchronization of chaos [J].
Rosa, E ;
Ott, E ;
Hess, MH .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1642-1645
[9]   Phase synchronization of chaotic oscillators [J].
Rosenblum, MG ;
Pikovsky, AS ;
Kurths, J .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1804-1807
[10]   From phase to lag synchronization in coupled chaotic oscillators [J].
Rosenblum, MG ;
Pikovsky, AS ;
Kurths, J .
PHYSICAL REVIEW LETTERS, 1997, 78 (22) :4193-4196