Calculation of affinities of peptides for proteins

被引:21
作者
Donnini, S
Juffer, AH
机构
[1] Univ Oulu, Bioctr, FIN-90014 Oulu, Finland
[2] Univ Oulu, Dept Biochem, FIN-90014 Oulu, Finland
关键词
free energy calculation; continuum approach; molecular dynamics; double decoupling method; LIE method;
D O I
10.1002/jcc.10387
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Several methodologies were employed to calculate the Gibbs standard free energy of binding for a collection of protein-ligand complexes, where the ligand is a peptide and the protein is representative for various protein families. Almost 40 protein-ligand complexes were employed for a continuum approach, which considers the protein and the peptide at the atomic level, but includes solvent as a polarizable continuum. Five protein-ligand complexes were employed for an all-atom approach that relies on a combination of the double decoupling method with thermodynamic integration and molecular dynamics. These affinities were also computed by means of the linear interaction energy method. Although it generally proved rather difficult to predict the absolute free energies correctly, for some protein families the experimental ranking order was correctly reproduced by the continuum and all-atom approach. Considerable attention has also been given to correctly analyze the affinities of charged peptides, where it is required to judge the effect of one or more ions that are being decoupled in an all-atom approach to preserve electroneutrality. The various methods are further judged upon their merits. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:393 / 411
页数:19
相关论文
共 102 条
[1]   ICM - A NEW METHOD FOR PROTEIN MODELING AND DESIGN - APPLICATIONS TO DOCKING AND STRUCTURE PREDICTION FROM THE DISTORTED NATIVE CONFORMATION [J].
ABAGYAN, R ;
TOTROV, M ;
KUZNETSOV, D .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1994, 15 (05) :488-506
[2]  
Allen M. P., 2009, Computer Simulation of Liquids
[3]  
[Anonymous], 1996, MOL MODELLING PRINCI
[4]   Ligand binding affinities from MD simulations [J].
Åqvist, J ;
Luzhkov, VB ;
Brandsdal, BO .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (06) :358-365
[5]   On the validity of electrostatic linear response in polar solvents [J].
Aqvist, J ;
Hansson, T .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (22) :9512-9521
[6]  
BAPTISTA AM, 1997, PROTEIN-STRUCT FUNCT, V27, P532
[7]   CALCULATION OF THE RELATIVE CHANGE IN BINDING FREE-ENERGY OF A PROTEIN-INHIBITOR COMPLEX [J].
BASH, PA ;
SINGH, UC ;
BROWN, FK ;
LANGRIDGE, R ;
KOLLMAN, PA .
SCIENCE, 1987, 235 (4788) :574-576
[8]   STANDARD THERMODYNAMICS OF TRANSFER - USES AND MISUSES [J].
BENNAIM, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1978, 82 (07) :792-803
[9]  
Berendsen H. J. C., 1981, Intermolecular Forces, P331, DOI [10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658]
[10]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56