Differential patterns of peroxynitrite mediated apoptosis in proximal tubular epithelial cells following ATP depletion recovery

被引:18
作者
Nilakantan, Vani [1 ,2 ]
Liang, Huanling [2 ]
Maenpaa, Cheryl J. [1 ,2 ]
Johnson, Christopher P. [1 ,2 ,3 ]
机构
[1] Med Coll Wisconsin, Kidney Dis Ctr, Milwaukee, WI 53226 USA
[2] Med Coll Wisconsin, Div Transplant Surg, Milwaukee, WI 53226 USA
[3] Med Coll Wisconsin, VA Med Ctr, Milwaukee, WI 53226 USA
关键词
ischemia-reperfusion; superoxide; peroxynitrite; ATP depletion; proximal tubular epithelial cells; FeTMPyP; apoptosis; caspase-3; Bcl-2;
D O I
10.1007/s10495-008-0196-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ischemia-reperfusion injury (IRI) is characterized by ATP depletion in the ischemic phase, followed by a rapid increase in reactive oxygen species, including peroxynitrite in the reperfusion phase. In this study, we examined the role of peroxynitrite on cytotoxicity and apoptosis in an in vitro model of ATP depletion-recovery. Porcine proximal tubular epithelial (LLC-PK1) cells were ATP depleted for either 2 h (2/2) or 4 h (4/2) followed by recovery in serum free medium for 2 h. A subset of cells was treated with 100 mu M of the peroxynitrite scavenger, iron (III) tetrakis (N-methyl-4'pyridyl) porphyrin pentachloride (FeTMPyP) 30 min prior to and during treatment/recovery. Treatment with FeTMPyP reduced cytotoxicity and superoxide levels at both the 2/2 and 4/2 time points, however FeTMPyP decreased nitric oxide only at the 2/2 time point. FeTMPyP also partially blocked caspase-3 and caspase-8 activation at both 2/2 and 4/2 time points. At the 4/2 time point, FeTMPyP also partially inhibited the ATP depletion mediated increase in tumor necrosis factor alpha (TNF-alpha) and decreased Bax and FasL gene expression. These data show that peroxynitrite induces apoptosis by activation of multiple pathways depending on length and severity of insult following ATP depletion-recovery.
引用
收藏
页码:621 / 633
页数:13
相关论文
共 59 条
[1]   Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi [J].
Alvarez, MN ;
Piacenza, L ;
Irigoín, F ;
Peluffo, G ;
Radi, R .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2004, 432 (02) :222-232
[2]   LACTATE PRODUCTION IN ISOLATED SEGMENTS OF THE RAT NEPHRON [J].
BAGNASCO, S ;
GOOD, D ;
BALABAN, R ;
BURG, M .
AMERICAN JOURNAL OF PHYSIOLOGY, 1985, 248 (04) :F522-F526
[3]   Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite [J].
Batthyány, C ;
Souza, JM ;
Durán, R ;
Cassina, A ;
Cerveñansky, C ;
Radi, R .
BIOCHEMISTRY, 2005, 44 (22) :8038-8046
[4]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[5]   KINETICS OF SUPEROXIDE DISMUTASE-CATALYZED AND IRON-CATALYZED NITRATION OF PHENOLICS BY PEROXYNITRITE [J].
BECKMAN, JS ;
ISCHIROPOULOS, H ;
ZHU, L ;
VANDERWOERD, M ;
SMITH, C ;
CHEN, J ;
HARRISON, J ;
MARTIN, JC ;
TSAI, M .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 298 (02) :438-445
[6]  
BECKMAN JS, 1994, METHOD ENZYMOL, V233, P229
[7]   Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide [J].
Borutaite, V ;
Brown, GC .
BIOCHEMICAL JOURNAL, 1996, 315 :295-299
[8]   Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols [J].
Brown, GC ;
Borutaite, V .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2004, 1658 (1-2) :44-49
[9]   Proteomics in Alzheimer's disease: insights into potential mechanisms of neurodegeneration [J].
Butterfield, DA ;
Boyd-Kimball, D ;
Castegna, A .
JOURNAL OF NEUROCHEMISTRY, 2003, 86 (06) :1313-1327
[10]   Biphasic translocation of Bax to mitochondria [J].
Capano, M ;
Crompton, M .
BIOCHEMICAL JOURNAL, 2002, 367 :169-178