Explaining Seasonal Fluctuations of Measles in Niger Using Nighttime Lights Imagery

被引:165
作者
Bharti, N. [1 ,2 ]
Tatem, A. J. [3 ,4 ,10 ]
Ferrari, M. J. [5 ,6 ]
Grais, R. F. [7 ,8 ]
Djibo, A. [9 ]
Grenfell, B. T. [1 ,2 ,10 ]
机构
[1] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA
[2] Princeton Univ, Woodrow Wilson Sch Publ & Int Affairs, Ctr Hlth & Wellbeing, Princeton, NJ 08544 USA
[3] Univ Florida, Dept Geog, Gainesville, FL 32610 USA
[4] Univ Florida, Emerging Pathogens Inst, Gainesville, FL 32610 USA
[5] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
[6] Penn State Univ, Ctr Infect Dis Dynam, University Pk, PA 16802 USA
[7] Epictr, F-75011 Paris, France
[8] Harvard Humanitarian Initiat, Cambridge, MA 02138 USA
[9] Minist Sante, DGSP, Niamey, Niger
[10] NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA
关键词
TRANSMISSION; DYNAMICS; EPIDEMIC;
D O I
10.1126/science.1210554
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Measles epidemics in West Africa cause a significant proportion of vaccine-preventable childhood mortality. Epidemics are strongly seasonal, but the drivers of these fluctuations are poorly understood, which limits the predictability of outbreaks and the dynamic response to immunization. We show that measles seasonality can be explained by spatiotemporal changes in population density, which we measure by quantifying anthropogenic light from satellite imagery. We find that measles transmission and population density are highly correlated for three cities in Niger. With dynamic epidemic models, we demonstrate that measures of population density are essential for predicting epidemic progression at the city level and improving intervention strategies. In addition to epidemiological applications, the ability to measure fine-scale changes in population density has implications for public health, crisis management, and economic development.
引用
收藏
页码:1424 / 1427
页数:4
相关论文
共 27 条
[1]   Baghdad nights: evaluating the US military 'surge' using nighttime light signatures [J].
Agnew, John ;
Gillespie, Thomas W. ;
Gonzalez, Jorge ;
Min, Brian .
ENVIRONMENT AND PLANNING A, 2008, 40 (10) :2285-2295
[2]   Seasonality and the dynamics of infectious diseases [J].
Altizer, S ;
Dobson, A ;
Hosseini, P ;
Hudson, P ;
Pascual, M ;
Rohani, P .
ECOLOGY LETTERS, 2006, 9 (04) :467-484
[3]  
ANDERSON R M, 1991
[4]  
[Anonymous], 2008, MODELING INFECT DIS, DOI DOI 10.1515/9781400841035
[5]   SEASONALITY AND PERIOD-DOUBLING BIFURCATIONS IN AN EPIDEMIC MODEL [J].
ARON, JL ;
SCHWARTZ, IB .
JOURNAL OF THEORETICAL BIOLOGY, 1984, 110 (04) :665-679
[6]   Determining global population distribution: Methods, applications and data [J].
Balk, D. L. ;
Deichmann, U. ;
Yetman, G. ;
Pozzi, F. ;
Hay, S. I. ;
Nelson, A. .
ADVANCES IN PARASITOLOGY, VOL 62: GLOBAL MAPPING OF INFECTIOUS DISEASES: METHODS, EXAMPLES AND EMERGING APPLICATIONS, 2006, 62 :119-156
[7]   A clarification of transmission terms in host-microparasite models: numbers, densities and areas [J].
Begon, M ;
Bennett, M ;
Bowers, RG ;
French, NP ;
Hazel, SM ;
Turner, J .
EPIDEMIOLOGY AND INFECTION, 2002, 129 (01) :147-153
[8]  
Camargo M C, 2000, Rev Panam Salud Publica, V7, P359
[9]  
Dobson JE, 2000, PHOTOGRAMM ENG REM S, V66, P849
[10]   From wealth to health: Modelling the distribution of income per capita at the sub-national level using night-time light imagery [J].
Ebener S. ;
Murray C. ;
Tandon A. ;
Elvidge C.C. .
International Journal of Health Geographics, 4 (1)