Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae

被引:219
作者
Kametaka, S
Okano, T
Ohsumi, M
Ohsumi, Y [1 ]
机构
[1] Natl Inst Basic Biol, Dept Cell Biol, Okazaki, Aichi 4448585, Japan
[2] Teikyo Univ Sci & Technol, Fac Engn Sci, Dept Biosci, Yamanashi 4090193, Japan
关键词
D O I
10.1074/jbc.273.35.22284
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutation in the Saccharomyces cerevisiae APG14 gene causes a defect in autophagy, Cloning and structural analysis of the APG14 gene revealed that APG14 encodes a novel hydrophilic protein with a predicted molecular mass of 40.5 kDa, and that Apg14p has a coiled-coil motif at its N terminus region, We found that overproduction of Apg14p partially reversed the defect in autophagy induced by the apg6-1 mutation. The apg6-1 mutant was found to be defective not only in autophagy but also in sorting of carboxypeptidase Y (CPY), a vacuolar-soluble hydrolase, to the vacuole, However, overexpression of APG14 did not alter the CPY sorting defect of the apg6-1 mutant, nor did the apg14 null mutation affect the CPY sorting pathway. Structural analysis of APG6 revealed that APG6 is identical to VPS30, which is involved in a retrieval step of the CPY receptor, Vps10p, to the late-Golgi from the endosome (Seaman, M. N. J., Marcusson, E. G., Cereghino, J. L., and Emr, S. D. (1997) J. Cell Biol. 137, 79-92), Subcellular fractionation indicated that Apg14p and Apg6p peripherally associated with a membrane structure(s), Apg14p was co-immunoprecipitated with Apg6p, suggesting that they form a stable protein complex. These results imply that Apg6/Vps30p has two distinct functions in the autophagic process and the vacuolar protein sorting pathway. Apg14p may be a component specifically required for the function of Apg6/Vps30p through the autophagic pathway.
引用
收藏
页码:22284 / 22291
页数:8
相关论文
共 47 条
[1]   Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome [J].
Baba, M ;
Osumi, M ;
Scott, SV ;
Klionsky, DJ ;
Ohsumi, Y .
JOURNAL OF CELL BIOLOGY, 1997, 139 (07) :1687-1695
[2]   Analysis of the membrane structures involved in autophagy in yeast by freeze-replica method [J].
Baba, M ;
Osumi, M ;
Ohsumi, Y .
CELL STRUCTURE AND FUNCTION, 1995, 20 (06) :465-471
[3]   ULTRASTRUCTURAL ANALYSIS OF THE AUTOPHAGIC PROCESS IN YEAST - DETECTION OF AUTOPHAGOSOMES AND THEIR CHARACTERIZATION [J].
BABA, M ;
TAKESHIGE, K ;
BABA, N ;
OHSUMI, Y .
JOURNAL OF CELL BIOLOGY, 1994, 124 (06) :903-913
[4]   Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p [J].
Babst, M ;
Sato, TK ;
Banta, LM ;
Emr, SD .
EMBO JOURNAL, 1997, 16 (08) :1820-1831
[5]   Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast [J].
Becherer, KA ;
Rieder, SE ;
Emr, SD ;
Jones, EW .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (04) :579-594
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   Novel Golgi to vacuole delivery pathway in yeast: Identification of a sorting determinant and required transport component [J].
Cowles, CR ;
Snyder, WB ;
Burd, CG ;
Emr, SD .
EMBO JOURNAL, 1997, 16 (10) :2769-2782
[8]   STUDIES ON THE MECHANISMS OF AUTOPHAGY - FORMATION OF THE AUTOPHAGIC VACUOLE [J].
DUNN, WA .
JOURNAL OF CELL BIOLOGY, 1990, 110 (06) :1923-1933
[10]   ISOLATION OF MONOCLONAL-ANTIBODIES SPECIFIC FOR HUMAN C-MYC PROTO-ONCOGENE PRODUCT [J].
EVAN, GI ;
LEWIS, GK ;
RAMSAY, G ;
BISHOP, JM .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (12) :3610-3616