Likelihood and non-parametric Bayesian MCMC inference for spatial point processes based on perfect simulation and path sampling

被引:22
作者
Berthelsen, KK [1 ]
Moller, J [1 ]
机构
[1] Univ Aalborg, Dept Math Sci, DK-9220 Aalborg, Denmark
关键词
coupling from the past (CFTP); exact simulation; likelihood inference; Markov chain Monte Carlo; multiscale process; non-parametric Bayesian smoothing; pairwise interaction point process; path sampling; simulation-based inference; Strauss process;
D O I
10.1111/1467-9469.00348
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the combination of path sampling and perfect simulation in the context of both likelihood inference and non-parametric Bayesian inference for pairwise interaction point processes. Several empirical results based on simulations and analysis of a data set are presented, and the merits of using perfect simulation are discussed.
引用
收藏
页码:549 / 564
页数:16
相关论文
共 33 条
[1]  
Aitchison J, 2003, STAT ANAL COMPOSITIO
[2]  
[Anonymous], SPATIAL STAT PAST PR
[3]  
ARJAS E, 1994, STAT SINICA, V4, P505
[4]   Practical maximum pseudolikelihood for spatial point patterns [J].
Baddeley, A ;
Turner, R .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2000, 42 (03) :283-315
[5]  
BERTHELSEN KK, 2002, IN PRESS B BRAZILIAN, V33
[6]  
BROOKS SP, 2002, 200205 U CAMBR STAT
[7]  
DIGGLE PJ, 1984, J ROY STAT SOC B MET, V46, P193
[8]   CLUSTERING ESTIMATES FOR SPATIAL POINT-DISTRIBUTIONS WITH UNSTABLE POTENTIALS [J].
GATES, DJ ;
WESTCOTT, M .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1986, 38 (01) :123-135
[9]  
Gelman A, 1998, STAT SCI, V13, P163
[10]  
Geyer C, 1999, MG STAT PRO, V80, P79