Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

被引:31
作者
Miller, Lance D. [1 ,2 ]
Mosher, Jennifer J. [1 ,2 ]
Venkateswaran, Amudhan [1 ,2 ]
Yang, Zamin K. [1 ,2 ]
Palumbo, Anthony V. [1 ,2 ]
Phelps, Tommy J. [1 ,2 ]
Podar, Mircea [1 ,2 ]
Schadt, Christopher W. [1 ,2 ]
Keller, Martin [1 ,2 ]
机构
[1] Oak Ridge Natl Lab, Biosci & Environm Sci Div, Oak Ridge, TN 37831 USA
[2] LBNL, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA
关键词
GEOBACTER-SULFURREDUCENS; CLOSTRIDIUM-CELLULOLYTICUM; CONTINUOUS CULTURES; WASTE-WATER; URANIUM; SULFATE; GROWTH; CARBON; REDUCTION; BACTERIA;
D O I
10.1186/1471-2180-10-149
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results: qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions: The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.
引用
收藏
页数:12
相关论文
共 54 条
[1]   Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer [J].
Anderson, RT ;
Vrionis, HA ;
Ortiz-Bernad, I ;
Resch, CT ;
Long, PE ;
Dayvault, R ;
Karp, K ;
Marutzky, S ;
Metzler, DR ;
Peacock, A ;
White, DC ;
Lowe, M ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (10) :5884-5891
[2]   COMPETITIVE-EXCLUSION [J].
ARMSTRONG, RA ;
MCGEHEE, R .
AMERICAN NATURALIST, 1980, 115 (02) :151-170
[3]  
Bender Kelly S, 2006, Biotechnol Genet Eng Rev, V23, P157
[4]   Diversity and dynamics of microbial communities in engineered environments and their implications for process stability [J].
Briones, A ;
Raskin, L .
CURRENT OPINION IN BIOTECHNOLOGY, 2003, 14 (03) :270-276
[5]   MICROBIAL LIFE AT 90 C - SULFUR BACTERIA OF BOULDER SPRING [J].
BROCK, TD ;
BROCK, ML ;
BOTT, TL ;
EDWARDS, MR .
JOURNAL OF BACTERIOLOGY, 1971, 107 (01) :303-&
[6]   Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducens [J].
Butler, JE ;
Glaven, RH ;
Esteve-Nunez, A ;
Nunez, C ;
Shelobolina, ES ;
Bond, DR ;
Lovley, DR .
JOURNAL OF BACTERIOLOGY, 2006, 188 (02) :450-455
[7]   GEOBACTER SULFURREDUCENS SP-NOV, A HYDROGEN-OXIDIZING AND ACETATE-OXIDIZING DISSIMILATORY METAL-REDUCING MICROORGANISM [J].
CACCAVO, F ;
LONERGAN, DJ ;
LOVLEY, DR ;
DAVIS, M ;
STOLZ, JF ;
MCINERNEY, MJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (10) :3752-3759
[8]   Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels [J].
Cardenas, Erick ;
Wu, Wei-Min ;
Leigh, Mary Beth ;
Carley, Jack ;
Carroll, Sue ;
Gentry, Terry ;
Luo, Jian ;
Watson, David ;
Gu, Baohua ;
Ginder-Vogel, Matthew ;
Kitanidis, Peter K. ;
Jardine, Philip M. ;
Zhou, Jizhong ;
Criddle, Craig S. ;
Marsh, Terence L. ;
Tiedje, James A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (12) :3718-3729
[9]   Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site [J].
Chang, YJ ;
Peacock, AD ;
Long, PE ;
Stephen, JR ;
McKinley, JP ;
Macnaughton, SJ ;
Hussain, AKMA ;
Saxton, AM ;
White, DC .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (07) :3149-3160
[10]   Fluorescence spectroscopic studies of natural organic matter fractions [J].
Chen, J ;
LeBoef, EJ ;
Dai, S ;
Gu, BH .
CHEMOSPHERE, 2003, 50 (05) :639-647