L1-regularization path algorithm for generalized linear models

被引:553
作者
Park, Mee Young
Hastie, Trevor
机构
[1] Google Inc, Mountain View, CA 94043 USA
[2] Stanford Univ, Stanford, CA 94305 USA
关键词
generalized linear model; lasso; path algorithm; predictor-corrector method; regularization; variable selection;
D O I
10.1111/j.1467-9868.2007.00607.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a path following algorithm for L-1-regularized generalized linear models. The L-1-regularization procedure is useful especially because it, in effect, selects variables according to the amount of penalization on the L-1-norm of the coefficients, in a manner that is less greedy than forward selection-backward deletion. The generalized linear model path algorithm efficiently computes solutions along the entire regularization path by using the predictor-corrector method of convex optimization. Selecting the step length of the regularization parameter is critical in controlling the overall accuracy of the paths; we suggest intuitive and flexible strategies for choosing appropriate values. We demonstrate the implementation with several simulated and real data sets.
引用
收藏
页码:659 / 677
页数:19
相关论文
共 29 条
[1]  
Allgower E., 1990, NUMERICAL CONTINUATI
[2]  
[Anonymous], 1991, ANAL MANIFOLDS
[3]  
COX DR, 1972, J R STAT SOC B, V34, P187
[4]   COVARIANCE ANALYSIS OF HEART-TRANSPLANT SURVIVAL DATA [J].
CROWLEY, J ;
HU, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (357) :27-36
[5]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[6]   BIAS REDUCTION OF MAXIMUM-LIKELIHOOD-ESTIMATES [J].
FIRTH, D .
BIOMETRIKA, 1993, 80 (01) :27-38
[7]  
Friedman J, 2001, The elements of statistical learning, V1, DOI DOI 10.1007/978-0-387-21606-5
[8]  
Garcia CB, 1981, Pathways to Solutions, Fixed Points, and Equilibria
[9]  
Genkin Alexander, 2004, LARGE SCALE BAYESIAN
[10]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537