8-nitro-2′-deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase hydrogen peroxide nitrite system of activated human phagocytes

被引:99
作者
Byun, J
Henderson, JP
Mueller, DM
Heinecke, JW
机构
[1] Univ Washington, Sch Med, Dept Med, Div Atherosclerosis Nutr & Lipid Res, St Louis, MO 63110 USA
[2] Univ Washington, Sch Med, Dept Mol Biol & Pharmacol, Div Atherosclerosis Nutr & Lipid Res, St Louis, MO 63110 USA
关键词
D O I
10.1021/bi9822980
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reactive intermediates generated by phagocytes damage DNA and may contribute to the link between chronic inflammation and cancer. Myeloperoxidase, a heme protein secreted by activated phagocytes, is a potential catalyst for such reactions. Recent studies demonstrate that this enzyme uses hydrogen peroxide (H2O2) and nitrite (NO2-) to generate reactive nitrogen species which convert tyrosine to 3-nitrotyrosine. We now report that activated human neutrophils use myeloperoxidase, H2O2, and NO2- to nitrate 2'-deoxygoanosine, one of the nucleosides of DNA. Through HPLC, UV/vis spectroscopy, and mass spectrometry, the two major products of this reaction were identified as 8-nitroguanine and 8-nitro-2'-deoxyguanosine. Nitration required each component of the complete enzymatic system and was inhibited by catalase and heme poisons. However, it was independent of chloride ion and little affected by scavengers of hypochlorous acid, suggesting that the reactive agent is a nitrogen dioxide-like species that results from the one-electron oxidation of NO2- by myeloperoxidase. Alternatively, 2'-deoxyguanosine might be oxidized directly by the enzyme to yield a radical species which subsequently reacts with NO2- or NO2. to generate the observed products. Human neutrophils stimulated with phorbol ester also generated 8-nitroguanine and 8-nitro-2'-deoxyguanosine. The reaction required NO2- and was inhibited by catalase and heme poisons, implicating myeloperoxidase in the cell-mediated pathway. These results indicate that human neutrophils use the myeloperoxidase-H2O2-NO2- system to generate reactive species that can nitrate the C-8 position of 2'-deoxyguanosine. Our observations raise the possibility that reactive nitrogen species generated by myeloperoxidase and other peroxidases contribute to nucleobase oxidation and tissue injury at sites of inflammation.
引用
收藏
页码:2590 / 2600
页数:11
相关论文
共 72 条
[1]  
ALBRICH JM, 1981, P NATL ACAD SCI USA, V78, P201
[2]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[3]   OXYGEN-DEPENDENT MICROBIAL KILLING BY PHAGOCYTES .1. [J].
BABIOR, BM .
NEW ENGLAND JOURNAL OF MEDICINE, 1978, 298 (12) :659-668
[4]   PHAGOCYTOSIS-INDUCED MUTAGENESIS IN BACTERIA [J].
BARAK, M ;
ULITZUR, S ;
MERZBACH, D .
MUTATION RESEARCH, 1983, 121 (01) :7-16
[5]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[6]   THE COMPARATIVE TOXICITY OF NITRIC-OXIDE AND PEROXYNITRITE TO ESCHERICHIA-COLI [J].
BRUNELLI, L ;
CROW, JP ;
BECKMAN, JS .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1995, 316 (01) :327-334
[7]   Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides [J].
Caulfield, JL ;
Wishnok, JS ;
Tannenbaum, SR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (21) :12689-12695
[8]   Isotope dilution mass spectrometric quantification of 3-nitrotyrosine in proteins and tissues is facilitated by reduction to 3-aminotyrosine [J].
Crowley, JR ;
Yarasheski, K ;
Leeuwenburgh, C ;
Turk, J ;
Heinecke, JW .
ANALYTICAL BIOCHEMISTRY, 1998, 259 (01) :127-135
[9]   MYELOPEROXIDASE, A CATALYST FOR LIPOPROTEIN OXIDATION, IS EXPRESSED IN HUMAN ATHEROSCLEROTIC LESIONS [J].
DAUGHERTY, A ;
DUNN, JL ;
RATERI, DL ;
HEINECKE, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 94 (01) :437-444
[10]  
DAUKI T, 1996, FREE RADICAL RES, V24, P369