Intensity and coherence of motifs in weighted complex networks -: art. no. 065103

被引:787
作者
Onnela, JP [1 ]
Saramäki, J
Kertész, J
Kaski, K
机构
[1] Aalto Univ, Lab Computat Engn, FIN-02150 Espoo, Finland
[2] Budapest Univ Technol & Econ, Dept Theoret Phys, Budapest, Hungary
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 06期
关键词
D O I
10.1103/PhysRevE.71.065103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The local structure of unweighted networks can be characterized by the number of times a subgraph appears in the network. The clustering coefficient, reflecting the local configuration of triangles, can be seen as a special case of this approach. In this paper we generalize this method for weighted networks. We introduce subgraph "intensity" as the geometric mean of its link weights and "coherence" as the ratio of the geometric to the corresponding arithmetic mean. Using these measures, motif scores and clustering coefficient can be generalized to weighted networks. To demonstrate these concepts, we apply them to financial and metabolic networks and find that inclusion of weights may considerably modify the conclusions obtained from the study of unweighted characteristics.
引用
收藏
页数:4
相关论文
共 33 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Global organization of metabolic fluxes in the bacterium Escherichia coli [J].
Almaas, E ;
Kovács, B ;
Vicsek, T ;
Oltvai, ZN ;
Barabási, AL .
NATURE, 2004, 427 (6977) :839-843
[3]  
Artzy-Randrup Y, 2004, SCIENCE, V305
[4]   The architecture of complex weighted networks [J].
Barrat, A ;
Barthélemy, M ;
Pastor-Satorras, R ;
Vespignani, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (11) :3747-3752
[5]   Weighted evolving networks:: Coupling topology and weight dynamics -: art. no. 228701 [J].
Barrat, A ;
Barthélemy, M ;
Vespignani, A .
PHYSICAL REVIEW LETTERS, 2004, 92 (22) :228701-1
[6]  
BARRAT A, CONDMAT0406238
[7]   Optimal paths in disordered complex networks [J].
Braunstein, LA ;
Buldyrev, SV ;
Cohen, R ;
Havlin, S ;
Stanley, HE .
PHYSICAL REVIEW LETTERS, 2003, 91 (16)
[8]   Evolution of networks [J].
Dorogovtsev, SN ;
Mendes, JFF .
ADVANCES IN PHYSICS, 2002, 51 (04) :1079-1187
[9]   The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae [J].
Farkas, I ;
Jeong, H ;
Vicsek, T ;
Barabási, AL ;
Oltvai, ZN .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 318 (3-4) :601-612
[10]   Deciphering metabolic networks [J].
Fiehn, O ;
Weckwerth, W .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2003, 270 (04) :579-588