Fitting mixed Poisson regression models using quasi-likelihood methods

被引:5
作者
Chen, JJ [1 ]
Ahn, HS [1 ]
机构
[1] US FDA,NATL CTR TOXICOL RES,DIV BIOMETRY & RISK ASSESSMENT,JEFFERSON,AR 72079
关键词
extended quasi-likelihood; negative binomial; Poisson-lognormal; Poisson-inverse-Gaussian pseudo-likelihood;
D O I
10.1002/bimj.4710380108
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is to investigate the use of the quasi-likelihood, extended quasi-likelihood, and pseudo-likelihood approach to estimating and testing the mean parameters with respect to two variance models, M1: psi = mu(theta)(1 + mu phi) and M2: psi = mu(theta)(1 + tau). Simulation was conducted to compare the bias and standard deviation, and type I error of the Wald tests, based on the model-based and robust variance estimates, using the three semi-parametric approaches under four mixed Poisson models, two variance structures, and two sample sizes. All methods perform reasonably well in terms of bias. Type I error of the Wald test, based on either the model-based or robust estimate, tends to be larger than the nominal level when over-dispersion is moderate. The extended quasi-likelihood method with the variance model M1 performs more consistently in terms of the efficiency and controlling the type I error than with the model M2, and better than the pseudo-likelihood approach with either the M1 or M2 model. The model-based estimate seems to perform better than the robust estimate when the sample size is small.
引用
收藏
页码:81 / 96
页数:16
相关论文
共 21 条
[1]  
[Anonymous], APPL STAT, DOI DOI 10.2307/2347792
[2]  
BRESLOW NE, 1990, STAT MED, V12, P38
[3]  
BRESLOW NE, 1984, APPL STAT-J ROY ST C, V33, P38
[4]   ROBUST ESTIMATION IN HETEROSCEDASTIC LINEAR-MODELS [J].
CARROLL, RJ ;
RUPPERT, D .
ANNALS OF STATISTICS, 1982, 10 (02) :429-441
[5]   ESTIMATION OF THE NEGATIVE BINOMIAL PARAMETER-KAPPA BY MAXIMUM QUASI-LIKELIHOOD [J].
CLARK, SJ ;
PERRY, JN .
BIOMETRICS, 1989, 45 (01) :309-316
[6]   VARIANCE FUNCTION ESTIMATION [J].
DAVIDIAN, M ;
CARROLL, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (400) :1079-1091
[7]   A MIXED POISSON INVERSE-GAUSSIAN REGRESSION-MODEL [J].
DEAN, C ;
LAWLESS, JF ;
WILLMOT, GE .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (02) :171-181
[8]   A ROBUST PROPERTY OF PSEUDO-LIKELIHOOD ESTIMATION FOR COUNT DATA [J].
DEAN, CB .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 35 (03) :309-317
[9]   REGRESSION-ANALYSIS OF POISSON-DISTRIBUTED DATA [J].
FROME, EL ;
KUTNER, MH ;
BEAUCHAM.JJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1973, 68 (344) :935-940
[10]  
Hinde J., 1982, GLIM 82, V14, P109