Averaged residence times of stochastic motions in bounded domains

被引:65
作者
Bénichou, O
Coppey, M
Moreau, M
Suet, PH
Voituriez, R
机构
[1] Univ Paris 06, Phys Theor Liquides Lab, CNRS, UMR 7600, F-75255 Paris, France
[2] Inst Curie, F-75248 Paris, France
来源
EUROPHYSICS LETTERS | 2005年 / 70卷 / 01期
关键词
D O I
10.1209/epl/i2005-10001-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two years ago, Blanco and Fournier (Blanco S. and Fournier R., Europhys. Lett., 61 (2003) 168) calculated the mean first exit time of a domain of a particle undergoing a randomly reoriented ballistic motion which starts from the boundary. They showed that it is simply related to the ratio of the volume's domain over its surface. This work was extended by Mazzolo (Mazzolo A., Europhys. Lett., 68 (2004) 350), who studied the case of trajectories which start inside the volume. In this letter, we propose an alternative formulation of the problem which allows us to calculate not only the mean exit time, but also the mean residence time inside a sub-domain. The cases of any combinations of reflecting and absorbing boundary conditions are considered. Lastly, we generalize our results for a wide class of stochastic motions.
引用
收藏
页码:42 / 48
页数:7
相关论文
共 15 条
[1]   RESIDENCE TIMES IN DIFFUSION-PROCESSES [J].
AGMON, N .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3644-3647
[2]  
[Anonymous], 1995, RANDOM WALKS RANDOM, DOI [DOI 10.1079/PNS19950063, 10.1079/PNS19950063]
[3]  
Bénichou O, 2003, J PHYS A-MATH GEN, V36, P7225, DOI 10.1088/0305-4470/36/26/301
[4]  
BENICHOU O, UNPUB PHYS REV LETT
[5]   Residence time distribution of a Brownian particle [J].
Berezhkovskii, AM ;
Zaloj, V ;
Agmon, N .
PHYSICAL REVIEW E, 1998, 57 (04) :3937-3947
[6]   An invariance property of diffusive random walks [J].
Blanco, S ;
Fournier, R .
EUROPHYSICS LETTERS, 2003, 61 (02) :168-173
[7]   LONG TRANSMISSION TIMES FOR TRANSPORT THROUGH A WEAKLY SCATTERING SLAB [J].
DOERING, CR ;
RAY, TS ;
GLASSER, ML .
PHYSICAL REVIEW A, 1992, 45 (02) :825-828
[8]   DYNAMIC MULTIPLE-SCATTERING - BALLISTIC PHOTONS AND THE BREAKDOWN OF THE PHOTON-DIFFUSION APPROXIMATION [J].
FREUND, I ;
KAVEH, M ;
ROSENBLUH, M .
PHYSICAL REVIEW LETTERS, 1988, 60 (12) :1130-1133
[9]  
Gardiner C., 2010, STOCHASTIC METHODS H
[10]  
Kac M., 1959, PROBABILITY RELATED