Keap1 modification and nuclear accumulation in response to S-nitrosocysteine

被引:56
作者
Buckley, Barbara J. [1 ]
Li, Sheng [2 ]
Whorton, A. Richard [1 ,2 ]
机构
[1] Duke Univ, Med Ctr, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA
关键词
nitric oxide; S-nitrosocysteine; S-nitrosylation; oxidation; Keap1; Nrf2; nuclear localization; free radicals;
D O I
10.1016/j.freeradbiomed.2007.10.055
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Keap1 is a key regulator of the Nrf2 transcription factor, which transactivates the antioxidant response element (ARE) and upregulates numerous proteins involved in antioxidant defense. Under basal conditions, Keap1 targets Nrf2 for ubiquitination and proteolytic degradation and as such is responsible for the rapid turnover of Nrf2. In response to oxidants and electrophiles, Nrf2 is stabilized and accumulates in the nucleus. The mechanism for this effect has been proposed to involve thiol-dependent modulation of Keap1 leading to loss of its ability to negatively regulate Nrf2. We have previously shown that nitric oxide and S-nitrosothiols cause nuclear accumulation of Nrf2 and upregulation of the ARE-regulated gene HO-1. Here we show that nitric oxide and S-nitrosocysteine (CSNO) cause time- and dose-dependent Keap1 thiol modification. These studies were carried out in HEK293 cells and in HEK293 cells overexpressing hemagglutinin-tagged Keap1. Furthermore we demonstrate that in response to CSNO Keap1 accumulates in the nucleus with a time course similar to that of Nrf2. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:692 / 698
页数:7
相关论文
共 37 条
[1]   Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene [J].
Alam, J ;
Stewart, D ;
Touchard, C ;
Boinapally, S ;
Choi, AMK ;
Cook, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :26071-26078
[2]   Nitric oxide stimulates Nrf2 nuclear translocation in vascular endothelium [J].
Buckley, BJ ;
Marshall, ZM ;
Whorton, AR .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 307 (04) :973-979
[3]   Adaptive responses to peroxynitrite: increased glutathione levels and cystine uptake in vascular cells [J].
Buckley, BJ ;
Whorton, AR .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2000, 279 (04) :C1168-C1176
[4]   The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: Oxidative stress sensing by a Cul3-Keap1 ligase [J].
Cullinan, SB ;
Gordan, JD ;
Jin, JO ;
Harper, JW ;
Diehl, JA .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (19) :8477-8486
[5]   Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells [J].
Dhakshinamoorthy, S ;
Porter, AG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (19) :20096-20107
[6]   Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase 1 gene [J].
Dhakshinamoorthy, S ;
Jaiswal, AK .
ONCOGENE, 2001, 20 (29) :3906-3917
[7]   Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants [J].
Dinkova-Kostova, AT ;
Holtzclaw, WD ;
Cole, RN ;
Itoh, K ;
Wakabayashi, N ;
Katoh, Y ;
Yamamoto, M ;
Talalay, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (18) :11908-11913
[8]   Modifying specific cysteines of the electrophile-sensing human Keap1 disrupt binding to the protein is insufficient to Nrf2 domain Neh2 [J].
Eggler, AL ;
Liu, GW ;
Pezzuto, JM ;
van Breemen, RB ;
Mesecar, AD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (29) :10070-10075
[9]   BTB protein keap1 targets antioxidant transcription factor nrf2 for ubiquitination by the cullin 3-Roc1 ligase [J].
Furukawa, M ;
Xiong, Y .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (01) :162-171
[10]   NO-donating aspirin induces phase II enzymes in vitro and in vivo [J].
Gao, JJ ;
Kashfi, K ;
Liu, XP ;
Rigas, B .
CARCINOGENESIS, 2006, 27 (04) :803-810