Comparative Analysis of Different Label-Free Mass Spectrometry Based Protein Abundance Estimates and Their Correlation with RNA-Seq Gene Expression Data

被引:109
作者
Ning, Kang [1 ,3 ]
Fermin, Damian [1 ]
Nesvizhskii, Alexey I. [1 ,2 ]
机构
[1] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Chinese Acad Sci, BioEnergy Genome Ctr, Qingdao Inst Bio Energy & Bioproc Technol, Beijing 266101, Peoples R China
基金
中国国家自然科学基金;
关键词
MESSENGER-RNA; PROTEOMIC DATA; STATISTICAL-MODEL; QUANTIFICATION; TANDEM; QUANTITATION; VALIDATION; SIGNATURES; FRAMEWORK; FEATURES;
D O I
10.1021/pr201052x
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
An increasing number of studies involve integrative analysis of gene and protein expression data taking advantage of new technologies such as next-generation transcriptome sequencing (RNA-Seq) and highly sensitive mass spectrometry (MS) instrumentation. Thus, it becomes interesting to revisit the correlative analysis of gene and protein expression data using more recently generated data sets. Furthermore, within the proteomics community there is a substantial interest in comparing the performance of different label-free quantitative proteomic strategies. Gene expression data can be used as an indirect benchmark for such protein-level comparisons. In this work we use publicly available mouse data to perform a joint analysis of genomic and proteomic data obtained on the same organism. First, we perform a comparative analysis of different label-free protein quantification methods (intensity based and spectral count based and using various associated data normalization steps) using several software tools on the proteomic side. Similarly, we perform correlative analysis of gene expression data derived using microarray and RNA-Seq methods on the genomic side. We also investigate the correlation between gene and protein expression data, and various factors affecting the accuracy of quantitation at both levels. It is observed that spectral count based protein abundance metrics, which are easy to extract from any published data, are comparable to intensity based measures with respect to correlation with gene expression data. The results of this work should be useful for designing robust computational pipelines for extraction and joint analysis of gene and protein expression data in the context of integrative studies.
引用
收藏
页码:2261 / 2271
页数:11
相关论文
共 53 条
[1]   Global signatures of protein and mRNA expression levels [J].
Abreu, Raquel de Sousa ;
Penalva, Luiz O. ;
Marcotte, Edward M. ;
Vogel, Christine .
MOLECULAR BIOSYSTEMS, 2009, 5 (12) :1512-1526
[2]   A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen [J].
Asara, John M. ;
Christofk, Heather R. ;
Freimark, Lisa M. ;
Cantley, Lewis C. .
PROTEOMICS, 2008, 8 (05) :994-999
[3]   A Quantitative Spatial Proteomics Analysis of Proteome Turnover in Human Cells [J].
Boisvert, Francois-Michel ;
Ahmad, Yasmeen ;
Gierlinski, Marek ;
Charriere, Fabien ;
Lamont, Douglas ;
Scott, Michelle ;
Barton, Geoff ;
Lamond, Angus I. .
MOLECULAR & CELLULAR PROTEOMICS, 2012, 11 (03)
[4]   Genome-wide gene expression profiling of nucleus accumbens neurons projecting to ventral pallidum using both microarray and transcriptome sequencing [J].
Chen, Hao ;
Liu, Zhimin ;
Gong, Suzhen ;
Wu, Xingjun ;
Taylor, William L. ;
Williams, Robert W. ;
Matta, Shannon G. ;
Sharp, Burt M. .
FRONTIERS IN NEUROSCIENCE, 2011, 5
[5]   TANDEM: matching proteins with tandem mass spectra [J].
Craig, R ;
Beavis, RC .
BIOINFORMATICS, 2004, 20 (09) :1466-1467
[6]   Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast [J].
de Godoy, Lyris M. F. ;
Olsen, Jesper V. ;
Cox, Juergen ;
Nielsen, Michael L. ;
Hubner, Nina C. ;
Froehlich, Florian ;
Walther, Tobias C. ;
Mann, Matthias .
NATURE, 2008, 455 (7217) :1251-U60
[7]  
Desiere F, 2005, GENOME BIOL, V6
[8]   A guided tour of the Trans-Proteomic Pipeline [J].
Deutsch, Eric W. ;
Mendoza, Luis ;
Shteynberg, David ;
Farrah, Terry ;
Lam, Henry ;
Tasman, Natalie ;
Sun, Zhi ;
Nilsson, Erik ;
Pratt, Brian ;
Prazen, Bryan ;
Eng, Jimmy K. ;
Martin, Daniel B. ;
Nesvizhskii, Alexey I. ;
Aebersold, Ruedi .
PROTEOMICS, 2010, 10 (06) :1150-1159
[9]   Review - Mass spectrometry and protein analysis [J].
Domon, B ;
Aebersold, R .
SCIENCE, 2006, 312 (5771) :212-217
[10]   Delayed Correlation of mRNA and Protein Expression in Rapamycin-treated Cells and a Role for Ggc1 in Cellular Sensitivity to Rapamycin [J].
Fournier, Marjorie L. ;
Paulson, Ariel ;
Pavelka, Norman ;
Mosley, Amber L. ;
Gaudenz, Karin ;
Bradford, William D. ;
Glynn, Earl ;
Li, Hua ;
Sardiu, Mihaela E. ;
Fleharty, Brian ;
Seidel, Christopher ;
Florens, Laurence ;
Washburn, Michael P. .
MOLECULAR & CELLULAR PROTEOMICS, 2010, 9 (02) :271-284