A microscopic view of ion conduction through the K+ channel

被引:195
作者
Bernèche, S [1 ]
Roux, B [1 ]
机构
[1] Cornell Univ, Weill Med Coll, Dept Biochem, New York, NY 10021 USA
关键词
molecular dynamics; Brownian dynamics; potential of mean force; membrane potential; Poisson-Boltzmann equation;
D O I
10.1073/pnas.1431750100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent results from x-ray crystallography and molecular dynamics free-energy simulations have revealed the existence of a number of specific cation-binding sites disposed along the narrow pore of the K+ channel from Streptomyces lividans(KcsA), suggesting that K+ ions might literally "hop" in single file from one binding site to the next as permeation proceeds. In support of this view, it was found that the ion configurations correspond to energy wells of similar depth and that ion translocation is opposed only by small energy barriers. Although such features of the multiion potential energy surface are certainly essential for achieving a high throughput rate, diffusional and dissipative dynamical factors must also be taken into consideration to understand how rapid conduction of K+ is possible. To elucidate the mechanism of ion conduction, we established a framework theory enabling the direct simulation of nonequilibrium fluxes by extending the results of molecular dynamics over macroscopically long times. In good accord with experimental measurements, the simulated maximum conductance of the channel at saturating concentration is on the order of 550 and 360 pS for outward and inward ions flux, respectively, with a unidirectional flux-ratio exponent of 3. Analysis of the ion-conduction process reveals a lack of equivalence between the cation-binding sites in the selectivity filter.
引用
收藏
页码:8644 / 8648
页数:5
相关论文
共 36 条
[1]  
ALLEN T, 2001, BIOPHYS BIOCH ACTA, V155, P83
[2]   The potassium channel: Structure, selectivity and diffusion [J].
Allen, TW ;
Bliznyuk, A ;
Rendell, AP ;
Kuyucak, S ;
Chung, SH .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (18) :8191-8204
[3]   Ion permeation mechanism of the potassium channel [J].
Åqvist, J ;
Luzhkov, V .
NATURE, 2000, 404 (6780) :881-884
[4]   BROWNIAN DYNAMICS STUDY OF A MULTIPLY-OCCUPIED CATION CHANNEL - APPLICATION TO UNDERSTANDING PERMEATION IN POTASSIUM CHANNELS [J].
BEK, S ;
JAKOBSSON, E .
BIOPHYSICAL JOURNAL, 1994, 66 (04) :1028-1038
[5]   CLASSICAL AND MODERN METHODS IN REACTION-RATE THEORY [J].
BERNE, BJ ;
BORKOVEC, M ;
STRAUB, JE .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (13) :3711-3725
[6]   Molecular dynamics of the KcsA K+ channel in a bilayer membrane [J].
Bernèche, S ;
Roux, B .
BIOPHYSICAL JOURNAL, 2000, 78 (06) :2900-2917
[7]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[8]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[9]   Permeation of ions across the potassium channel: Brownian dynamics studies [J].
Chung, SH ;
Allen, TW ;
Hoyles, M ;
Kuyucak, S .
BIOPHYSICAL JOURNAL, 1999, 77 (05) :2517-2533
[10]   THE THEORY OF ION-TRANSPORT THROUGH MEMBRANE CHANNELS [J].
COOPER, K ;
JAKOBSSON, E ;
WOLYNES, P .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1985, 46 (01) :51-96