Reperfusion accelerates acute neuronal death induced by simulated ischemia

被引:39
作者
Li, Dongdong
Shao, Zuohui
Vanden Hoek, Terry L.
Brorson, James R.
机构
[1] Univ Chicago, Dept Neurol, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Med, Chicago, IL 60637 USA
关键词
cortical neurons; ischemia; reperfusion; stroke; in vitro model; necrosis; excitotoxicity; neuroprotection;
D O I
10.1016/j.expneurol.2007.05.017
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Observations in real time can provide insights into the timing of injury and the mechanisms of damage in neural ischemia-reperfusion. Continuous digital imaging of morphology and cell viability was applied in a novel model of simulated ischemia-reperfusion in cultured cortical neurons, consisting of exposure to severe hypoxia combined with glucose deprivation, mild acidosis, hypercapnia, and elevated potassium, followed by return of oxygenated, glucose-containing physiological saline. Substantial acute injury resulted following I h of simulated ischemia, with 36 +/- 8% neurons dying within 2 h of reperfusion. Inclusion of moderate glutamate elevation (30 mu M) in the simulation of ischemia increased the acute neuronal death to 51 +/- 6% at 2 h of reperfusion. While some swelling and neuritic breakdown occurred during ischemia, particularly with inclusion of glutamate, neuronal death, as marked by loss of somatic membrane integrity, was entirely restricted to the reperfusion phase. Morphological and cytoskeletal changes suggested a predominance of necrotic death in the acute phase of reperfusion, with more complete delayed death accompanied by some apoptotic features occurring over subsequent days. Prolonged simulated ischemia, without reperfusion, did not induce significant acute neuronal death even when extended to 3 h. We conclude that while morphological changes suggesting initiation of neuronal injury appear during severe simulated ischemia, the irreversible injury signaled by membrane breakdown is accelerated by the events of reperfusion itself. (c) 2007 Published by Elsevier Inc.
引用
收藏
页码:280 / 287
页数:8
相关论文
共 43 条
[1]   EXCITOTOXICITY INDUCED BY ENHANCED EXCITATORY NEUROTRANSMISSION IN CULTURED HIPPOCAMPAL PYRAMIDAL NEURONS [J].
ABELE, AE ;
SCHOLZ, KP ;
SCHOLZ, WK ;
MILLER, RJ .
NEURON, 1990, 4 (03) :413-419
[2]   Intra-arrest cooling improves outcomes in a murine cardiac arrest model [J].
Abella, BS ;
Zhao, DH ;
Alvarado, J ;
Hamann, K ;
Vanden Hoek, TL ;
Becker, LB .
CIRCULATION, 2004, 109 (22) :2786-2791
[3]   Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation [J].
Abramov, Andrey Y. ;
Scorziello, Antonella ;
Duchen, Michael R. .
JOURNAL OF NEUROSCIENCE, 2007, 27 (05) :1129-1138
[4]   EFFECTS OF THE SUPEROXIDE RADICAL SCAVENGER SUPEROXIDE-DISMUTASE, AND OF THE HYDROXYL RADICAL SCAVENGER MANNITOL, ON REPERFUSION INJURY IN ISOLATED RABBIT HEARTS [J].
AMBROSIO, G ;
FLAHERTY, JT .
CARDIOVASCULAR DRUGS AND THERAPY, 1992, 6 (06) :623-632
[5]   Reperfusion injury: Demonstration of brain damage produced by reperfusion after transient focal ischemia in rats [J].
Aronowski, J ;
Strong, R ;
Grotta, JC .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1997, 17 (10) :1048-1056
[6]   APOPTOSIS AND NECROSIS - 2 DISTINCT EVENTS INDUCED, RESPECTIVELY, BY MILD AND INTENSE INSULTS WITH N-METHYL-D-ASPARTATE OR NITRIC-OXIDE SUPEROXIDE IN CORTICAL CELL-CULTURES [J].
BONFOCO, E ;
KRAINC, D ;
ANKARCRONA, M ;
NICOTERA, P ;
LIPTON, SA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7162-7166
[7]   Key note lecture - Toward a mechanistic taxonomy for cell death programs [J].
Bredesen, Dale E. .
STROKE, 2007, 38 (02) :652-660
[8]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[9]   Mitochondrial dysfunction and oxidative stress as determinants of cell death/survival in stroke [J].
Chan, PH .
ROLE OF THE MITOCHONDRIA IN HUMAN AGING AND DISEASE: FROM GENES TO CELL SIGNALING, 2005, 1042 :203-209
[10]   Reactive oxygen radicals in signaling and damage in the ischemic brain [J].
Chan, PH .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (01) :2-14