A survey of geodesic paths on 3D surfaces

被引:56
作者
Bose, Prosenjit [2 ]
Maheshwari, Anil [2 ]
Shu, Chang [1 ]
Wuhrer, Stefanie [1 ]
机构
[1] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada
[2] Carleton Univ, Sch Comp Sci, Ottawa, ON K1S 5B6, Canada
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2011年 / 44卷 / 09期
基金
加拿大自然科学与工程研究理事会;
关键词
Computational geometry; Shortest paths; Three-dimensional shortest paths; Polyhedral surfaces; APPROXIMATING SHORTEST PATHS; CONVEX POLYTOPE; ALGORITHMS;
D O I
10.1016/j.comgeo.2011.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This survey gives a brief overview of theoretically and practically relevant algorithms to compute geodesic paths and distances on three-dimensional surfaces. The survey focuses on three-dimensional polyhedral surfaces. The goal of this survey is to identify the most relevant open problems, both theoretical and practical. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:486 / 498
页数:13
相关论文
共 68 条
[1]   Computing approximate shortest paths on convex polytopes [J].
Agarwal, PK ;
Har-Peled, S ;
Karia, A .
ALGORITHMICA, 2002, 33 (02) :227-242
[2]   Approximating shortest paths on a convex polytope in three dimensions [J].
Agarwal, PK ;
HarPeled, S ;
Sharir, M ;
Varadarajan, KR .
JOURNAL OF THE ACM, 1997, 44 (04) :567-584
[3]  
Aleksandov L., 2000, Proceedings of the Thirty Second Annual ACM Symposium on Theory of Computing, P286, DOI 10.1145/335305.335339
[4]   Determining approximate shortest paths on weighted polyhedral surfaces [J].
Aleksandrov, L ;
Maheshwari, A ;
Sack, JR .
JOURNAL OF THE ACM, 2005, 52 (01) :25-53
[5]  
ALEKSANDROV L, 1998, P 6 SCAND WORKSH ALG, P11
[6]   Algorithms for Approximate Shortest Path Queries on Weighted Polyhedral Surfaces [J].
Aleksandrov, Lyudmil ;
Djidjev, Hristo N. ;
Guo, Hua ;
Maheshwari, Anil ;
Nussbaum, Doron ;
Sack, Joerg-Ruediger .
DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (04) :762-801
[7]  
[Anonymous], 1999, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
[8]  
[Anonymous], INT J SHAPE MODEL
[9]  
Arnold V., 2003, Lectures on partial differential equations
[10]  
ASI E, 2003, IEEE T PATTERN ANAL, V25, P1285