Structural equilibrium of DNA represented with different force fields

被引:110
作者
Feig, M [1 ]
Pettitt, BM [1 ]
机构
[1] Univ Houston, Dept Chem, Houston, TX 77204 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1016/S0006-3495(98)77501-0
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We have recently indicated preliminary evidence of different equilibrium average structures with the CHARMM and AMBER force fields in explicit solvent molecular dynamics simulations on the DNA duplex d(C5T5).d(A(5)G(5)) (Feig, M. and B. M. Pettitt, 1997, Experiment vs. Force fields: DNA conformation from molecular dynamics simulations. J. Phys. Chem. B. 101:7361-7363). This paper presents a detailed comparison of DNA structure and dynamics for both force fields from extended simulation times of 10 ns each. Average structures display an A-DNA base geometry with the CHARMM force field and a base geometry that is intermediate between A- and B-DNA with the AMBER force field. The backbone assumes B form on both strands with the AMBER force field, while the CHARMM force field produces heterogeneous structures with the purine strand in A form and the pyrimidine strand in dynamical equilibrium between A and B conformations. The results compare well with experimental data for the cytosine/guanine part but fail to fully reproduce an overall B conformation in the thymine/adenine tract expected from crystallographic data, particularly with the CHARMM force field. Fluctuations between A and B conformations are observed on the nanosecond time scale in both simulations, particularly with the AMBER force field. Different dynamical behavior during the first 4 ns indicates that convergence times of several nanoseconds are necessary to fully establish a dynamical equilibrium in all structural quantities on the time scale of the simulations presented here.
引用
收藏
页码:134 / 149
页数:16
相关论文
共 109 条
[1]   POLY(DA).POLY(DT) IS A B-TYPE DOUBLE HELIX WITH A DISTINCTIVELY NARROW MINOR GROOVE [J].
ALEXEEV, DG ;
LIPANOV, AA ;
SKURATOVSKII, IY .
NATURE, 1987, 325 (6107) :821-823
[2]  
Allen M. P., 1987, Computer Simulation of Liquids
[3]   HETERONOMOUS DNA [J].
ARNOTT, S ;
CHANDRASEKARAN, R ;
HALL, IH ;
PUIGJANER, LC .
NUCLEIC ACIDS RESEARCH, 1983, 11 (12) :4141-4155
[4]   H-bond stability in the tRNA(Asp) anticodon hairpin: 3 ns of multiple molecular dynamics simulations [J].
Auffinger, P ;
Westhof, E .
BIOPHYSICAL JOURNAL, 1996, 71 (02) :940-954
[5]   A SIMPLE TEST FOR EVALUATING THE TRUNCATION EFFECTS IN SIMULATIONS OF SYSTEMS INVOLVING CHARGED GROUPS [J].
AUFFINGER, P ;
BEVERIDGE, DL .
CHEMICAL PHYSICS LETTERS, 1995, 234 (4-6) :413-415
[6]   THE EFFECT OF MATHEMATICS AND COORDINATE SYSTEM ON COMPARABILITY AND DEPENDENCIES OF NUCLEIC-ACID STRUCTURE PARAMETERS [J].
BABCOCK, MS ;
OLSON, WK .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 237 (01) :98-124
[7]   NUCLEIC-ACID STRUCTURE-ANALYSIS - MATHEMATICS FOR LOCAL CARTESIAN AND HELICAL STRUCTURE PARAMETERS THAT ARE TRULY COMPARABLE BETWEEN STRUCTURES [J].
BABCOCK, MS ;
PEDNAULT, EPD ;
OLSON, WK .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 237 (01) :125-156
[8]   THEORY OF TWISTING AND BENDING OF CHAIN MACROMOLECULES - ANALYSIS OF THE FLUORESCENCE DEPOLARIZATION OF DNA [J].
BARKLEY, MD ;
ZIMM, BH .
JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (06) :2991-3007
[9]   H-1 TWO-DIMENSIONAL NUCLEAR OVERHAUSER EFFECT AND RELAXATION STUDIES OF POLY(DA).POLY(DT) [J].
BEHLING, RW ;
KEARNS, DR .
BIOCHEMISTRY, 1986, 25 (11) :3335-3346
[10]   RAMAN SPECTRAL STUDIES OF NUCLEIC-ACIDS .30. RAMAN-SPECTRA OF SINGLE-CRYSTALS OF R(GCG)D(CGC) AND D(CCCCGGGG) AS MODELS FOR A-DNA, THEIR STRUCTURE TRANSITIONS IN AQUEOUS-SOLUTION, AND COMPARISON WITH DOUBLE-HELICAL POLY(DG).POLY(DC) [J].
BENEVIDES, JM ;
WANG, AHJ ;
RICH, A ;
KYOGOKU, Y ;
VANDERMAREL, GA ;
VANBOOM, JH ;
THOMAS, GJ .
BIOCHEMISTRY, 1986, 25 (01) :41-50