Epidemic dynamics and endemic states in complex networks

被引:1171
作者
Pastor-Satorras, R
Vespignani, A
机构
[1] Univ Politecn Cataluna, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain
[2] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 06期
关键词
D O I
10.1103/PhysRevE.63.066117
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. in networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding. computer virus epidemics and other spreading phenomena on communication and social networks.
引用
收藏
页数:8
相关论文
共 40 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
ABRAMSON G, NLNAO0010012
[3]   Topology of evolving networks:: Local events and universality [J].
Albert, R ;
Barabási, AL .
PHYSICAL REVIEW LETTERS, 2000, 85 (24) :5234-5237
[4]   Internet -: Diameter of the World-Wide Web [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 1999, 401 (6749) :130-131
[5]   Classes of small-world networks [J].
Amaral, LAN ;
Scala, A ;
Barthélémy, M ;
Stanley, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11149-11152
[6]  
BAILEY NT, 1975, MATH THEORY INFECT D
[7]   Mean-field theory for scale-free random networks [J].
Barabási, AL ;
Albert, R ;
Jeong, H .
PHYSICA A, 1999, 272 (1-2) :173-187
[8]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[9]   On the properties of small-world network models [J].
Barrat, A ;
Weigt, M .
EUROPEAN PHYSICAL JOURNAL B, 2000, 13 (03) :547-560
[10]  
BARRAT A, CONDMAT9903323