On safe tractable approximations of chance constraints

被引:93
作者
Nernirovski, Arkadi [1 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Uncertainty modeling; Convex programming; Optimization under uncertainty; Chance constraints; Robust Optimization; RANDOMIZED SOLUTIONS; CONVEX; OPTIMIZATION; PROGRAMS;
D O I
10.1016/j.ejor.2011.11.006
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
A natural way to handle optimization problem with data affected by stochastic uncertainty is to pass to a chance constrained version of the problem, where candidate solutions should satisfy the randomly perturbed constraints with probability at least 1 - epsilon. While being attractive from modeling viewpoint, chance constrained problems "as they are" are, in general, computationally intractable. In this survey paper, we overview several simulation-based and simulation-free computationally tractable approximations of chance constrained convex programs, primarily, those of chance constrained linear, conic quadratic and semidefinite programming. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:707 / 718
页数:12
相关论文
共 30 条
[1]  
[Anonymous], 2006, Probabilistic and Randomized Methods for Design Under Uncertainty
[2]  
[Anonymous], 2013, Stochastic Programming
[3]   Robust solutions of uncertain linear programs [J].
Ben-Tal, A ;
Nemirovski, A .
OPERATIONS RESEARCH LETTERS, 1999, 25 (01) :1-13
[4]  
BenTal A, 2009, PRINC SER APPL MATH, P1
[5]   Optimal inequalities in probability theory: A convex optimization approach [J].
Bertsimas, D ;
Popescu, I .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (03) :780-804
[6]   Robust discrete optimization and network flows [J].
Bertsimas, D ;
Sim, M .
MATHEMATICAL PROGRAMMING, 2003, 98 (1-3) :49-71
[7]  
Bertsimas D., 2000, Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, P469, DOI 10.1007/978-1-4615-4381-7_16
[8]   BRUNN-MINKOWSKI INEQUALITY IN GAUSS SPACE [J].
BORELL, C .
INVENTIONES MATHEMATICAE, 1975, 30 (02) :207-216
[9]   Uncertain convex programs: randomized solutions and confidence levels [J].
Calafiore, G ;
Campi, MC .
MATHEMATICAL PROGRAMMING, 2005, 102 (01) :25-46
[10]  
Calafiore Giuseppe C., 2004, MULTIPLE PARTICIPANT