Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK

被引:387
作者
Allan, LA
Morrice, N
Brady, S
Magee, G
Pathak, S
Clarke, PR [1 ]
机构
[1] Univ Dundee, Ninewells Hosp & Med Sch, Ctr Biomed Res, Dundee DD1 9SY, Scotland
[2] Univ Dundee, MRC, Prot Phosphorylat Unit, Sch Life Sci, Dundee DD1 5EH, Scotland
基金
英国医学研究理事会;
关键词
D O I
10.1038/ncb1005
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Many pro-apoptotic signals activate caspase-9, an initiator protease that activates caspase-3 and downstream caspases to initiate cellular destruction(1). However, survival signals can impinge on this pathway and suppress apoptosis. Activation of the Ras-Raf-MEK-ERK mitogen-activated protein kinase ( MAPK) pathway is associated with protection of cells from apoptosis and inhibition of caspase-3 activation(2-5), although the targets are unknown. Here, we show that the ERK MAPK pathway inhibits caspase-9 activity by direct phosphorylation. In mammalian cell extracts, cytochrome c-induced activation of caspases-9 and -3 requires okadaic-acid-sensitive protein phosphatase activity. The opposing protein kinase activity is overcome by treatment with the broad-specificity kinase inhibitor staurosporine or with inhibitors of MEK1/2. Caspase-9 is phosphorylated at Thr 125, a conserved MAPK consensus site targeted by ERK2 in vitro, in a MEK-dependent manner in cells stimulated with epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA). Phosphorylation at Thr 125 is sufficient to block caspase-9 processing and subsequent caspase-3 activation. We suggest that phosphorylation and inhibition of caspase-9 by ERK promotes cell survival during development and tissue homeostasis. This mechanism may also contribute to tumorigenesis when the ERK MAPK pathway is constitutively activated.
引用
收藏
页码:647 / U45
页数:9
相关论文
共 30 条
[1]   Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding, and activation [J].
Acehan, D ;
Jiang, XJ ;
Morgan, DG ;
Heuser, JE ;
Wang, XD ;
Akey, CW .
MOLECULAR CELL, 2002, 9 (02) :423-432
[2]   Regulation of cell number by MAPK-dependent control of apoptosis: A mechanism for trophic survival signaling [J].
Bergmann, A ;
Tugentman, M ;
Shilo, BZ ;
Steller, H .
DEVELOPMENTAL CELL, 2002, 2 (02) :159-170
[3]   The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling [J].
Bergmann, A ;
Agapite, J ;
McCall, K ;
Steller, H .
CELL, 1998, 95 (03) :331-341
[4]   Biochemical pathways of caspase activation during apoptosis [J].
Budihardjo, I ;
Oliver, H ;
Lutter, M ;
Luo, X ;
Wang, XD .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :269-290
[5]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321
[6]   Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development [J].
Cecconi, F ;
Alvarez-Bolado, G ;
Meyer, BI ;
Roth, KA ;
Gruss, P .
CELL, 1998, 94 (06) :727-737
[7]  
CLARKE PR, 2002, APOPTOSIS MOL BIOL P, P176
[8]   Specificity and mechanism of action of some commonly used protein kinase inhibitors [J].
Davies, SP ;
Reddy, H ;
Caivano, M ;
Cohen, P .
BIOCHEMICAL JOURNAL, 2000, 351 (351) :95-105
[9]  
Erhardt P, 1999, MOL CELL BIOL, V19, P5308
[10]   Differential requirement for Caspase 9 in apoptotic pathways in vivo [J].
Hakem, R ;
Hakem, A ;
Duncan, GS ;
Henderson, JT ;
Woo, M ;
Soengas, MS ;
Elia, A ;
de la Pompa, JL ;
Kagi, D ;
Khoo, W ;
Potter, J ;
Yoshida, R ;
Kaufman, SA ;
Lowe, SW ;
Penninger, JM ;
Mak, TW .
CELL, 1998, 94 (03) :339-352