Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1B in vivo and enhances the early insulin action cascade

被引:415
作者
Mahadev, K [1 ]
Zilbering, A [1 ]
Zhu, L [1 ]
Goldstein, BJ [1 ]
机构
[1] Thomas Jefferson Univ, Jefferson Med Coll, Dept Med,Div Endocrinol & Metab Dis, Dorrance H Hamilton Res Labs, Philadelphia, PA 19107 USA
关键词
D O I
10.1074/jbc.C100109200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The insulin signaling pathway is activated by tyrosine phosphorylation of the insulin receptor and key postreceptor substrate proteins and balanced by the action of specific protein-tyrosine phosphatases (PTPases), PTPase activity, in turn, is highly regulated in vivo by oxidation/reduction reactions involving the cysteine thiol moiety required for catalysis, Here we show that insulin stimulation generates a burst of intracellular H2O2 in insulin-sensitive hepatoma and adipose cells that is associated with reversible oxidative inhibition of up to 62% of overall cellular PTPase activity, as measured by a novel method using strictly anaerobic conditions. The specific activity of immunoprecipitated PTP1B, a PTPase homolog implicated in the regulation of insulin signaling, was also strongly inhibited by up to 88% following insulin stimulation, Catalase pretreatment abolished the insulin-stimulated production of H2O2 as well as the inhibition of cellular PTPases, including PTP1B, and was associated with reduced insulin-stimulated tyrosine phosphorylation of its receptor and high M-r insulin receptor substrate (IRS) proteins. These data provide compelling new evidence for a redox signal that enhances the early insulin-stimulated cascade of tyrosine phosphorylation by oxidative inactivation of PTP1B and possibly other tyrosine phosphatases.
引用
收藏
页码:21938 / 21942
页数:5
相关论文
共 41 条
[1]   OSMOTIC LOADING OF NEUTRALIZING ANTIBODIES DEMONSTRATES A ROLE FOR PROTEIN-TYROSINE-PHOSPHATASE 1B IN NEGATIVE REGULATION OF THE INSULIN ACTION PATHWAY [J].
AHMAD, F ;
LI, PM ;
MEYEROVITCH, J ;
GOLDSTEIN, BJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (35) :20503-20508
[2]   Hydrogen peroxide activates p70S6k signaling pathway [J].
Bae, GU ;
Seo, DW ;
Kwon, HK ;
Lee, HY ;
Hong, S ;
Lee, ZW ;
Ha, KS ;
Lee, HW ;
Han, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (46) :32596-32602
[3]   Epidermal growth factor (EGF)-induced generation of hydrogen peroxide - Role in EGF receptor-mediated tyrosine phosphorylation [J].
Bae, YS ;
Kang, SW ;
Seo, MS ;
Baines, IC ;
Tekle, E ;
Chock, PB ;
Rhee, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (01) :217-221
[4]   The structure and mechanism of protein phosphatases: Insights into catalysis and regulation [J].
Barford, D ;
Das, AK ;
Egloff, MP .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1998, 27 :133-164
[5]   Regulation of PTP1B via glutathionylation of the active site cysteine 215 [J].
Barrett, WC ;
DeGnore, JP ;
König, S ;
Fales, HM ;
Keng, YF ;
Zhang, ZY ;
Yim, MB ;
Chock, PB .
BIOCHEMISTRY, 1999, 38 (20) :6699-6705
[6]   DYNAMIC REGULATION OF INTACT AND C-TERMINAL TRUNCATED INSULIN-RECEPTOR PHOSPHORYLATION IN PERMEABILIZED CELLS [J].
BERNIER, M ;
LIOTTA, AS ;
KOLE, HK ;
SHOCK, DD ;
ROTH, J .
BIOCHEMISTRY, 1994, 33 (14) :4343-4351
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]   Dynamics of protein-tyrosine phosphatases in rat adipocytes [J].
Calera, MR ;
Vallega, G ;
Pilch, PF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (09) :6308-6312
[9]   Marked impairment of protein tyrosine phosphatase 1B activity in adipose tissue of obese subjects with and without type 2 diabetes mellitus [J].
Cheung, A ;
Kusari, J ;
Jansen, D ;
Bandyopadhyay, D ;
Kusari, A ;
Bryer-Ash, M .
JOURNAL OF LABORATORY AND CLINICAL MEDICINE, 1999, 134 (02) :115-123
[10]   MICROINJECTION OF A PROTEIN-TYROSINE-PHOSPHATASE INHIBITS INSULIN ACTION IN XENOPUS OOCYTES [J].
CICIRELLI, MF ;
TONKS, NK ;
DILTZ, CD ;
WEIEL, JE ;
FISCHER, EH ;
KREBS, EG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (14) :5514-5518