On the boundary of the union of planar convex sets

被引:16
作者
Pach, J [1 ]
Sharir, M
机构
[1] CUNY City Coll, Dept Comp Sci, New York, NY 10031 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[4] Hungarian Acad Sci, Budapest, Hungary
关键词
Alternative Proof; Planar Convex; Connected Piece;
D O I
10.1007/PL00009424
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give two alternative proofs leading to different generalizations of the following theorem of [1]. Given n convex sets in the plane, such that the boundaries of each pair of sets cross at most twice, then the boundary of their union consists of at most 6n - 12 arcs. (An arc is a connected piece of the boundary of one of the sets.) In the generalizations we allow pairs of boundaries to cross more than twice.
引用
收藏
页码:321 / 328
页数:8
相关论文
共 5 条
[1]  
[Anonymous], 1934, Fund. Math., V23, P135, DOI DOI 10.4064/FM-23-1-135-142
[2]   ON THE UNION OF JORDAN REGIONS AND COLLISION-FREE TRANSLATIONAL MOTION AMIDST POLYGONAL OBSTACLES [J].
KEDEM, K ;
LIVNE, R ;
PACH, J ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (01) :59-71
[3]   On Conway's thrackle conjecture [J].
Lovasz, L ;
Pach, J ;
Szegedy, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 18 (04) :369-376
[4]  
PACH J, 1995, COMBINATORIAL GEOMET
[5]  
WHITESIDES S, 1990, 9008 SOCS MCGILL U