Accumulation of cyclin E is not a prerequisite for passage through the restriction point

被引:84
作者
Ekholm, SV
Zickert, P
Reed, SI
Zetterberg, A
机构
[1] Karolinska Hosp, Karolinska Inst, Dept Oncol Pathol Cellular & Mol Tumorpathol, S-17176 Stockholm, Sweden
[2] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1128/MCB.21.9.3256-3265.2001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The restriction point (R) is defined as the point in G(1) after which cells can complete a division cycle without growth factors and divides G(1) into two physiologically different intervals in cycling tells, G(1)-pm (a postmitotic interval with a constant length of 3 to 4 h) and G(1)-ps (a pre-DNA-synthetic interval with a variable length of 1 to 10 h). Cyclin E is a G(1) regulatory protein whose accumulation has been suggested to be critical for passage through R. We have studied cyclin E protein levels in individual cells of asynchronously growing cell populations, with respect to both passage through R and entry into S phase. We found that the postmitotic G(1) cells that had not yet reached R were negative for cyclin E accumulation, On the other hand, cells that had passed R were found to accumulate cyclin E at variable times (1 to 8 h) after passage through R and 2 to 5 h before entry into S. These kinetic data rule out the hypothesis that passage through R is dependent on the accumulation of cyclin E but suggest, instead, the converse, that passage through R is a prerequisite for cyclin E accumulation. Furthermore, we found that most of the cyclin E protein is downregulated within 1 to 2 h after entry into S.
引用
收藏
页码:3256 / 3265
页数:10
相关论文
共 78 条
[1]   PHOSPHORYLATION OF THE RETINOBLASTOMA PROTEIN BY CDK2 [J].
AKIYAMA, T ;
OHUCHI, T ;
SUMIDA, S ;
MATSUMOTO, K ;
TOYOSHIMA, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (17) :7900-7904
[2]   The cyclin-dependent kinase inhibitors olomoucine and roscovitine arrest human fibroblasts in G1 phase by specific inhibition of CDK2 kinase activity [J].
Alessi, F ;
Quarta, S ;
Savio, M ;
Riva, F ;
Rossi, L ;
Stivala, LA ;
Scovassi, AI ;
Meijer, L ;
Prosperi, E .
EXPERIMENTAL CELL RESEARCH, 1998, 245 (01) :8-18
[3]   CYCLIN D1 IS A NUCLEAR-PROTEIN REQUIRED FOR CELL-CYCLE PROGRESSION IN G(1) [J].
BALDIN, V ;
LUKAS, J ;
MARCOTE, MJ ;
PAGANO, M ;
DRAETTA, G .
GENES & DEVELOPMENT, 1993, 7 (05) :812-821
[4]   The retinoblastoma protein pathway and the restriction point [J].
Bartek, J ;
Bartkova, J ;
Lukas, J .
CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (06) :805-814
[5]   Cell cycle regulation by the retinoblastoma family of growth inhibitory proteins [J].
Beijersbergen, RL ;
Bernards, R .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 1996, 1287 (2-3) :103-120
[6]  
Bresnahan WA, 1996, CELL GROWTH DIFFER, V7, P1283
[7]   Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation [J].
Clurman, BE ;
Sheaff, RJ ;
Thress, K ;
Groudine, M ;
Roberts, JM .
GENES & DEVELOPMENT, 1996, 10 (16) :1979-1990
[8]   Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation [J].
ConnellCrowley, L ;
Harper, JW ;
Goodrich, DW .
MOLECULAR BIOLOGY OF THE CELL, 1997, 8 (02) :287-301
[9]  
DOU QP, 1993, CANCER RES, V53, P1493
[10]   CONDITIONS LIMITING MULTIPLICATION OF FIBROBLASTIC AND EPITHELIAL-CELLS IN DENSE CULTURES [J].
DULBECCO, R ;
ELKINGTON, J .
NATURE, 1973, 246 (5430) :197-199