Mxi1 is a repressor of the c-myc promoter and reverses activation by USF

被引:55
作者
Lee, TC
Ziff, EB
机构
[1] NYU, Med Ctr, Howard Hughes Med Inst, Dept Biochem, New York, NY 10016 USA
[2] NYU, Med Ctr, Kaplan Canc Ctr, New York, NY 10016 USA
关键词
D O I
10.1074/jbc.274.2.595
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The basic region/helix-loop-helix/leucine zipper (B-HLH-LZ) oncoprotein c-Myc is abundant in proliferating cells and forms heterodimers with Max protein that bind to E-box sites in DNA and stimulate genes required for proliferation. A second B-HLH-LZ protein, Mxi1, is induced during terminal differentiation, and forms heterodimers with Max that also bind E-boxes but tether the mSin3 transcriptional repressor protein along with histone deacetylase thereby antagonizing Myc-dependent activation, We show that Mxi1 also antagonizes Myc by a second pathway, repression of transcription from the major c-myc promoter, P2. Repression was independent of Mxi1 binding to mSin3 but dependent on the Mxi1 LZ and COOH-terminal sequences, including putative casein kinase II phosphorylation sites. Repression targeted elements of the myc P2 promoter core (-35/ +10), where it reversed transactivation by the constitutive transcription factor, USF, We show that Zn2+ induction of a stably transfected, metallothionein promoter-regulated mxi1 gene blocked the ability of serum to induce transcription of the endogenous c-myc gene and cell entry into S phase. Thus, induction of Mxi1 in terminally differentiating cells may block Myc function by repressing the c-myc gene P2 promoter, as well as by antagonizing Myc-dependent transactivation through E-boxes.
引用
收藏
页码:595 / 606
页数:12
相关论文
共 79 条
[1]   Cyclin E and c-Myc promote cell proliferation in the presence of p16(INK4a) and of hypophosphorylated retinoblastoma family proteins [J].
Alevizopoulos, K ;
Vlach, J ;
Hennecke, S ;
Amati, B .
EMBO JOURNAL, 1997, 16 (17) :5322-5333
[2]   Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression [J].
Alland, L ;
Muhle, R ;
Hou, H ;
Potes, J ;
Chin, L ;
SchreiberAgus, N ;
DePinho, RA .
NATURE, 1997, 387 (6628) :49-55
[3]   TRANSCRIPTIONAL ACTIVATION BY THE HUMAN C-MYC ONCOPROTEIN IN YEAST REQUIRES INTERACTION WITH MAX [J].
AMATI, B ;
DALTON, S ;
BROOKS, MW ;
LITTLEWOOD, TD ;
EVAN, GI ;
LAND, H .
NATURE, 1992, 359 (6394) :423-426
[4]  
Ayer DE, 1996, MOL CELL BIOL, V16, P5772
[5]   MAD-MAX TRANSCRIPTIONAL REPRESSION IS MEDIATED BY TERNARY COMPLEX-FORMATION WITH MAMMALIAN HOMOLOGS OF YEAST REPRESSOR SIN3 [J].
AYER, DE ;
LAWRENCE, QA ;
EISENMAN, RN .
CELL, 1995, 80 (05) :767-776
[6]   MAD - A HETERODIMERIC PARTNER FOR MAX THAT ANTAGONIZES MYC TRANSCRIPTIONAL ACTIVITY [J].
AYER, DE ;
KRETZNER, L ;
EISENMAN, RN .
CELL, 1993, 72 (02) :211-222
[7]   A SWITCH FROM MYC-MAX TO MAD-MAX HETEROCOMPLEXES ACCOMPANIES MONOCYTE/MACROPHAGE DIFFERENTIATION [J].
AYER, DE ;
EISENMAN, RN .
GENES & DEVELOPMENT, 1993, 7 (11) :2110-2119
[8]   THE ORNITHINE DECARBOXYLASE GENE IS A TRANSCRIPTIONAL TARGET OF C-MYC [J].
BELLOFERNANDEZ, C ;
PACKHAM, G ;
CLEVELAND, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (16) :7804-7808
[9]   SEQUENCE OF THE MURINE AND HUMAN CELLULAR MYC ONCOGENES AND 2 MODES OF MYC TRANSCRIPTION RESULTING FROM CHROMOSOME-TRANSLOCATION IN B-LYMPHOID TUMORS [J].
BERNARD, O ;
CORY, S ;
GERONDAKIS, S ;
WEBB, E ;
ADAMS, JM .
EMBO JOURNAL, 1983, 2 (12) :2375-2383
[10]  
BLACKWOOD EM, 1991, COLD SPRING HARB SYM, V56, P109