Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair

被引:133
作者
Dianova, II
Bohr, VA
Dianov, GL [1 ]
机构
[1] MRC, Radiat & Genome Stabil Unit, Harwell OX11 0RD, Berks, England
[2] NIA, Mol Gerontol Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1021/bi011117i
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To understand the mechanism involved in the coordination of the sequential repair reactions that lead to long-patch BER, we have investigated interactions between proteins involved in this pathway. We find that human AP endonuclease I (APE1) physically interacts with flap endonuclease I (FEN1) and with proliferating cell nuclear antigen. An oligonucleotide substrate containing a reduced abasic site, which was pre-incised with APE1, was employed to reconstitute the excision step of long-patch BER with purified human DNA polymerase beta and FEN1. We demonstrate that addition of APE1 to the excision reaction mixture slightly (1.5-2-fold) stimulates the removal of the displaced flap by FEN1. These results suggest the possibility that long-patch BER is coordinated and directed by protein-protein interactions.
引用
收藏
页码:12639 / 12644
页数:6
相关论文
共 48 条
[1]   Interaction of human apurinic endonuclease and DNA polymerase beta in the base excision repair pathway [J].
Bennett, RAO ;
Wilson, DM ;
Wong, D ;
Demple, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7166-7169
[2]   XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly(ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro [J].
Caldecott, KW ;
Aoufouchi, S ;
Johnson, P ;
Shall, S .
NUCLEIC ACIDS RESEARCH, 1996, 24 (22) :4387-4394
[3]   Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair [J].
Cappelli, E ;
Taylor, R ;
Cevasco, M ;
Abbondandolo, A ;
Caldecott, K ;
Frosina, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (38) :23970-23975
[4]   Who binds wins: competition for PCNA rings out cell-cycle changes [J].
Cox, LS .
TRENDS IN CELL BIOLOGY, 1997, 7 (12) :493-498
[5]   GENERATION OF SINGLE-NUCLEOTIDE REPAIR PATCHES FOLLOWING EXCISION OF URACIL RESIDUES FROM DNA [J].
DIANOV, G ;
PRICE, A ;
LINDAHL, T .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (04) :1605-1612
[6]   Repair pathways for processing of 8-oxoguanine in DNA by mammalian cell extracts [J].
Dianov, G ;
Bischoff, C ;
Piotrowski, J ;
Bohr, VA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (50) :33811-33816
[7]   RECONSTITUTION OF THE DNA-BASE EXCISION-REPAIR PATHWAY [J].
DIANOV, G ;
LINDAHL, T .
CURRENT BIOLOGY, 1994, 4 (12) :1069-1076
[8]   Role of DNA polymerase β in the excision step of long patch mammalian base excision repair [J].
Dianov, GL ;
Prasad, R ;
Wilson, SH ;
Bohr, VA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (20) :13741-13743
[9]   The type of DNA glycosylase determines the base excision repair pathway in mammalian cells [J].
Fortini, P ;
Parlanti, E ;
Sidorkina, OM ;
Laval, J ;
Dogliotti, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (21) :15230-15236
[10]   Two pathways for base excision repair in mammalian cells [J].
Frosina, G ;
Fortini, P ;
Rossi, O ;
Carrozzino, F ;
Raspaglio, G ;
Cox, LS ;
Lane, DP ;
Abbondandolo, A ;
Dogliotti, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (16) :9573-9578