Inhibition of the epithelial Na+ channel by interaction of Nedd4 with a PY motif deleted in Liddle's syndrome

被引:151
作者
Goulet, CC
Volk, KA
Adams, CM
Prince, LS
Stokes, JB
Snyder, PM
机构
[1] Univ Iowa, Coll Med, Dept Internal Med, Iowa City, IA 52242 USA
[2] Dept Vet Affairs Med Ctr, Iowa City, IA 52242 USA
关键词
D O I
10.1074/jbc.273.45.30012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The epithelial Na+ channel (ENaC) plays a critical role in Na+ absorption in the kidney and other epithelia, Mutations in the C terminus of the beta or gamma ENaC subunits increase renal Na+ absorption, causing Liddle's syndrome, an inherited form of hypertension. These mutations delete or disrupt a PY motif that was recently shown to interact with Nedd4, a ubiquitin-protein ligase expressed in epithelia, We found that Nedd4 inhibited ENaC when they were coexpressed in Xenopus oocytes. Liddle's syndrome-associated mutations that prevent the interaction between Nedd4 and ENaC abolished inhibition, suggesting that a direct interaction is required for inhibition by Nedd4. Inhibition also required activity of a ubiquitin ligase domain within the C terminus of Nedd4, Nedd4 had no detectable effect on the single channel properties of ENaC, Rather, Nedd4 decreased cell surface expression of both ENaC and a chimeric protein containing the C terminus of the beta subunit, Decreased surface expression resulted from an increase in the rate of degradation of the channel complex. Thus, interaction of Nedd4 with the C terminus of ENaC inhibits Na+ absorption, and loss of this interaction may play a role in the pathogenesis of Liddle's syndrome and other forms of hypertension.
引用
收藏
页码:30012 / 30017
页数:6
相关论文
共 34 条
[1]   ACETYLCHOLINE-RECEPTOR CHANNEL STRUCTURE PROBED IN CYSTEINE-SUBSTITUTION MUTANTS [J].
AKABAS, MH ;
STAUFFER, DA ;
XU, M ;
KARLIN, A .
SCIENCE, 1992, 258 (5080) :307-310
[2]  
BENOS DJ, 1995, J MEMBRANE BIOL, V143, P1
[3]   AMILORIDE-SENSITIVE EPITHELIAL NA+ CHANNEL IS MADE OF 3 HOMOLOGOUS SUBUNITS [J].
CANESSA, CM ;
SCHILD, L ;
BUELL, G ;
THORENS, B ;
GAUTSCHI, I ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1994, 367 (6462) :463-467
[4]   EPITHELIAL SODIUM-CHANNEL RELATED TO PROTEINS INVOLVED IN NEURODEGENERATION [J].
CANESSA, CM ;
HORISBERGER, JD ;
ROSSIER, BC .
NATURE, 1993, 361 (6411) :467-470
[5]   THE WW DOMAIN OF YES-ASSOCIATED PROTEIN BINDS A PROLINE-RICH LIGAND THAT DIFFERS FROM THE CONSENSUS ESTABLISHED FOR SRC HOMOLOGY 3-BINDING MODULES [J].
CHEN, HI ;
SUDOL, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) :7819-7823
[6]  
CHUENG M, 1997, J GEN PHYSIOL, V109, P289
[7]   TRANSFERRIN RECEPTOR INTERNALIZATION SEQUENCE YXRF IMPLICATES A TIGHT TURN AS THE STRUCTURAL RECOGNITION MOTIF FOR ENDOCYTOSIS [J].
COLLAWN, JF ;
STANGEL, M ;
KUHN, LA ;
ESEKOGWU, V ;
JING, SQ ;
TROWBRIDGE, IS ;
TAINER, JA .
CELL, 1990, 63 (05) :1061-1072
[8]   Nedd4 mediates control of an epithelial Na+ channel in salivary duct cells by cytosolic Na+ [J].
Dinudom, A ;
Harvey, KF ;
Komwatana, P ;
Young, JA ;
Kumar, S ;
Cook, DI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (12) :7169-7173
[9]   Epithelial sodium channels: Function, structure, and regulation [J].
Garty, H ;
Palmer, LG .
PHYSIOLOGICAL REVIEWS, 1997, 77 (02) :359-396
[10]   A DE-NOVO MISSENSE MUTATION OF THE BETA-SUBUNIT OF THE EPITHELIAL SODIUM-CHANNEL CAUSES HYPERTENSION AND LIDDLE SYNDROME, IDENTIFYING A PROLINE-RICH SEGMENT CRITICAL FOR REGULATION OF CHANNEL ACTIVITY [J].
HANSSON, JH ;
SCHILD, L ;
LU, Y ;
WILSON, TA ;
GAUTSCHI, I ;
SHIMKETS, R ;
NELSONWILLIAMS, C ;
ROSSIER, BC ;
LIFTON, RP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (25) :11495-11499