Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer

被引:452
作者
Wang, Xinyi [1 ]
Zhang, Haiyang [1 ]
Yang, Haiou [1 ]
Bai, Ming [1 ]
Ning, Tao [1 ]
Deng, Ting [1 ]
Liu, Rui [1 ]
Fan, Qian [1 ]
Zhu, Kegan [1 ]
Li, Jialu [2 ,3 ]
Zhan, Yang [1 ]
Ying, Guoguang [1 ]
Ba, Yi [1 ]
机构
[1] Tianjin Med Univ Canc Inst & Hosp, Natl Clin Res Ctr Canc, Tianjins Clin Res Ctr Canc, Key Lab Canc Prevent & Therapy, Tianjin, Peoples R China
[2] Shanghai Inst Digest Dis, Div Gastroenterol & Hepatol, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Renji Hosp, Key Lab Gastroenterol & Hepatol, Minist Hlth,Sch Med, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
aerobic glycolysis; chemoresistance; circRNA; exosome; hsa_circ_0005963; PKM2; HEPATOCELLULAR-CARCINOMA; CIRCULAR RNA;
D O I
10.1002/1878-0261.12629
中图分类号
R73 [肿瘤学];
学科分类号
100214 [肿瘤学];
摘要
Malignant tumors, including colorectal cancer (CRC), usually rely on ATP generation through aerobic glycolysis for both rapid growth and chemotherapy resistance. The M2 isoform of pyruvate kinase (PKM2) has a key role in catalyzing glycolysis, and PKM2 expression varies even within a single tumor. In this study, we confirmed that expression of PKM2 is heterogeneous in CRC cells, namely high in oxaliplatin-resistant cells but relatively low in sensitive cells, and found that chemoresistant cells had enhanced glycolysis and ATP production. In addition, we report a PKM2-dependent mechanism through which chemosensitive cells may gradually transform into chemoresistant cells. The circular RNA hsa_circ_0005963 (termed ciRS-122 in this study), which was determined to be a sponge for the PKM2-targeting miR-122, was positively correlated with chemoresistance. In vitro and in vivo studies showed that exosomes from oxaliplatin-resistant cells delivered ciRS-122 to sensitive cells, thereby promoting glycolysis and drug resistance through miR-122 sponging and PKM2 upregulation. Moreover, si-ciRS-122 transported by exosomes could suppress glycolysis and reverse resistance to oxaliplatin by regulating the ciRS-122-miR-122-PKM2 pathway in vivo. Exosomes derived from chemoresistant CRC cells could transfer ciRS-122 across cells and promote glycolysis to reduce drug susceptibility in chemosensitive cells. This intercellular signal delivery suggests a potential novel therapeutic target and establishes a foundation for future clinical applications in drug-resistant CRC.
引用
收藏
页码:539 / 555
页数:17
相关论文
共 27 条
[1]   CircRNAs and cancer: Biomarkers and master regulators [J].
Arnaiz, Esther ;
Sole, Carla ;
Manterola, Lorea ;
Iparraguirre, Leire ;
Otaegui, David ;
Lawrie, Charles H. .
SEMINARS IN CANCER BIOLOGY, 2019, 58 :90-99
[2]   Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance [J].
Bar-Zeev, Maya ;
Livney, Yoav D. ;
Assaraf, Yehuda G. .
DRUG RESISTANCE UPDATES, 2017, 31 :15-30
[3]   Rocking cell metabolism: revised functions of the key glycolytic regulator PKM2 in cancer [J].
Chaneton, Barbara ;
Gottlieb, Eyal .
TRENDS IN BIOCHEMICAL SCIENCES, 2012, 37 (08) :309-316
[4]   Circular RNA circMTO1 Acts as the Sponge of MicroRNA-9 to Suppress Hepatocellular Carcinoma Progression [J].
Han, Dan ;
Li, Jiangxue ;
Wang, Huamin ;
Su, Xiaoping ;
Hou, Jin ;
Gu, Yan ;
Qian, Cheng ;
Lin, Yun ;
Liu, Xiang ;
Huang, Mingyan ;
Li, Nan ;
Zhou, Weiping ;
Yu, Yizhi ;
Cao, Xuetao .
HEPATOLOGY, 2017, 66 (04) :1151-1164
[5]   A modular platform for targeted RNAi therapeutics [J].
Kedmi, Ranit ;
Veiga, Nuphar ;
Ramishetti, Srinivas ;
Goldsmith, Meir ;
Rosenblum, Daniel ;
Dammes, Niels ;
Hazan-Halevy, Inbal ;
Nahary, Limor ;
Leviatan-Ben-Arye, Shani ;
Harlev, Michael ;
Behlke, Mark ;
Benhar, Itai ;
Lieberman, Judy ;
Peer, Dan .
NATURE NANOTECHNOLOGY, 2018, 13 (03) :214-+
[6]   Circular RNAs in cancer: opportunities and challenges in the field [J].
Kristensen, L. S. ;
Hansen, T. B. ;
Veno, M. T. ;
Kjems, J. .
ONCOGENE, 2018, 37 (05) :555-565
[7]   Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies [J].
Li, Wen ;
Zhang, Han ;
Assaraf, Yehuda G. ;
Zhao, Kun ;
Xue, Xiaojun ;
Xie, Jinbing ;
Yang, Dong-Hua ;
Chen, Zhe-Sheng .
DRUG RESISTANCE UPDATES, 2016, 27 :14-29
[8]   The Warburg Effect: How Does it Benefit Cancer Cells? [J].
Liberti, Maria V. ;
Locasale, Jason W. .
TRENDS IN BIOCHEMICAL SCIENCES, 2016, 41 (03) :211-218
[9]   Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper [J].
Mateescu, Bogdan ;
Kowal, Emma J. K. ;
van Balkom, Bas W. M. ;
Bartel, Sabine ;
Bhattacharyya, Suvendra N. ;
Buzas, Edit I. ;
Buck, Amy H. ;
de Candia, Paola ;
Chow, Franklin W. N. ;
Das, Saumya ;
Driedonks, Tom A. P. ;
Fernandez-Messina, Lola ;
Haderk, Franziska ;
Hill, Andrew F. ;
Jones, Jennifer C. ;
Van Keuren-Jensen, Kendall R. ;
Lai, Charles P. ;
Laesser, Cecilia ;
di Liegro, Italia ;
Lunavat, Taral R. ;
Lorenowicz, Magdalena J. ;
Maas, Sybren L. N. ;
Maeger, Imre ;
Mittelbrunn, Maria ;
Momma, Stefan ;
Mukherjee, Kamalika ;
Nawaz, Muhammed ;
Pegtel, D. Michiel ;
Pfaffl, Michael W. ;
Schiffelers, Raymond M. ;
Tahara, Hidetoshi ;
Thery, Clotilde ;
Tosar, Juan Pablo ;
Wauben, Marca H. M. ;
Witwer, Kenneth W. ;
Nolte-'t Hoen, Esther N. M. .
JOURNAL OF EXTRACELLULAR VESICLES, 2017, 6
[10]   Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication [J].
Mathieu, Mathilde ;
Martin-Jaular, Lorena ;
Lavieu, Gregory ;
Thery, Clotilde .
NATURE CELL BIOLOGY, 2019, 21 (01) :9-17