Optimal Lower Bounds for Anonymous Scheduling Mechanisms

被引:31
作者
Ashlagi, Itai [1 ]
Dobzinski, Shahar [2 ]
Lavi, Ron [3 ]
机构
[1] MIT, Sloan Sch Management, Cambridge, MA 02142 USA
[2] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[3] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
基金
美国国家科学基金会;
关键词
anonymous; mechanism; scheduling; truthfulness; DESIGN; MONOTONICITY;
D O I
10.1287/moor.1110.0534
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the problem of designing truthful mechanisms on m unrelated machines, to minimize some optimization goal. Nisan and Ronen [Nisan, N., A. Ronen. 2001. Algorithmic mechanism design. Games Econom. Behav. 35 166-196] consider the specific goal of makespan minimization, and show a lower bound of 2, and an upper bound of m. This large gap inspired many attempts that yielded positive results for several special cases, but very partial success for the general case: the lower bound was slightly increased to 2.61 by Christodoulou et al. [Christodoulou, G., E. Koutsoupias, A. Kovacs. 2010. Mechanism design for fractional scheduling on unrelated machines. ACM Trans. Algorithms (TALG) 6(2) 1-18] and Koutsoupias and Vidali [Koutsoupias, E., A. Vidali. 2007. A lower bound of 1+phi for truthful scheduling mechanisms. Proc. 32nd Internat. Sympos. Math. Foundations Comput. Sci. (MFCS)], while the best upper bound remains unchanged. In this paper we show the optimal lower bound on truthful anonymous mechanisms: no such mechanism can guarantee an approximation ratio better than in. Moreover, our proof yields similar optimal bounds for two other optimization goals: the sum of completion times and the l(p) norm of the schedule.
引用
收藏
页码:244 / 258
页数:15
相关论文
共 16 条
[1]  
Aggarwal G., 2005, PROC 37 ANN ACM S TH, P619
[2]  
Archer A, 2001, ANN IEEE SYMP FOUND, P482
[3]   Weak monotonicity characterizes deterministic dominant-strategy implementation [J].
Bikhchandani, Sushil ;
Chatterji, Shurojit ;
Lavi, Ron ;
Mu'alem, Ahuva ;
Nisan, Noam ;
Sen, Arunava .
ECONOMETRICA, 2006, 74 (04) :1109-1132
[4]  
Christodoulou G., 2010, P 21 ACM SIAM S DISC
[5]  
Christodoulou G., 2008, SPRINGER LNCS
[6]   Mechanism Design for Fractional Scheduling on Unrelated Machines [J].
Christodoulou, George ;
Koutsoupias, Elias ;
Kovacs, Annamaria .
ACM TRANSACTIONS ON ALGORITHMS, 2010, 6 (02)
[7]   A Lower Bound for Scheduling Mechanisms [J].
Christodoulou, George ;
Koutsoupias, Elias ;
Vidali, Angelina .
ALGORITHMICA, 2009, 55 (04) :729-740
[8]  
Dhangwatnotai P., 2008, P IEEE 49 IEEE S FDN
[9]  
Dobzinski S., 2008, P 9 ACM C EL COMM AC
[10]   BOUNDS FOR THE OPTIMAL SCHEDULING OF NORMAL-JOBS ON META-PROCESSORS [J].
EASTMAN, WL ;
EVEN, S ;
ISAACS, IM .
MANAGEMENT SCIENCE, 1964, 11 (02) :268-279