Modulation of AMPA receptor unitary conductance by synaptic activity

被引:407
作者
Benke, TA [1 ]
Lüthi, A [1 ]
Isaac, JTR [1 ]
Collingridge, GL [1 ]
机构
[1] Univ Bristol, Sch Med Sci, Dept Anat, Bristol BS8 1TD, Avon, England
基金
英国惠康基金;
关键词
D O I
10.1038/31709
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Activity-dependent alteration in synaptic strength is a fundamental property of the vertebrate central nervous system and is thought to underlie learning and memory. The most extensively studied model of activity-dependent synaptic plasticity is longterm potentiation (LTP) of glutamate-responsive (glutamatergic) synapses, a widespread phenomenon involving multiple mechanisms(1). The best characterized form of LTP occurs in the CA1 region of the hippocampus, in which LTP is initiated by transient activation of NMDA (N-methyl-D-aspartate) receptors and is expressed as a persistent increase in synaptic transmission through AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole pionate) receptors(2). This increase is due, at least in part, to a postsynaptic modification of AMPA-receptor function(3); this modification could be caused by an increase in the number of receptors, their open probability, their kinetics or their single-channel conductance. Here we show that the induction of LTP in the CA1 region of the hippocampus is often associated with an increase in single-channel conductance of AMPA receptors. This shows that elementary channel properties can be rapidly modified by synaptic activity and provides an insight into one molecular mechanism by which glutamatergic synapses can alter their strength.
引用
收藏
页码:793 / 797
页数:5
相关论文
共 30 条
[1]   AN EVALUATION OF CAUSES FOR UNRELIABILITY OF SYNAPTIC TRANSMISSION [J].
ALLEN, C ;
STEVENS, CF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (22) :10380-10383
[2]   Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation [J].
Barria, A ;
Muller, D ;
Derkach, V ;
Griffith, LC ;
Soderling, TR .
SCIENCE, 1997, 276 (5321) :2042-2045
[3]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[4]   RELATIONSHIP BETWEEN MEMBRANE EXCITABILITY AND SINGLE CHANNEL OPEN-CLOSE KINETICS [J].
CLAY, JR ;
DEFELICE, LJ .
BIOPHYSICAL JOURNAL, 1983, 42 (02) :151-157
[5]   THE TIME COURSE OF GLUTAMATE IN THE SYNAPTIC CLEFT [J].
CLEMENTS, JD ;
LESTER, RAJ ;
TONG, G ;
JAHR, CE ;
WESTBROOK, GL .
SCIENCE, 1992, 258 (5087) :1498-1501
[6]   EXCITATORY AMINO-ACIDS IN SYNAPTIC TRANSMISSION IN THE SCHAFFER COLLATERAL COMMISSURAL PATHWAY OF THE RAT HIPPOCAMPUS [J].
COLLINGRIDGE, GL ;
KEHL, SJ ;
MCLENNAN, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1983, 334 (JAN) :33-46
[7]   MULTIPLE-CONDUCTANCE CHANNELS ACTIVATED BY EXCITATORY AMINO-ACIDS IN CEREBELLAR NEURONS [J].
CULLCANDY, SG ;
USOWICZ, MM .
NATURE, 1987, 325 (6104) :525-528
[8]   TEMPORALLY DISTINCT PRE-SYNAPTIC AND POST-SYNAPTIC MECHANISMS MAINTAIN LONG-TERM POTENTIATION [J].
DAVIES, SN ;
LESTER, RAJ ;
REYMANN, KG ;
COLLINGRIDGE, GL .
NATURE, 1989, 338 (6215) :500-503
[9]   NOISE-ANALYSIS OF MINIATURE IPSCS IN ADULT-RAT BRAIN-SLICES - PROPERTIES AND MODULATION OF SYNAPTIC GABA(A), RECEPTOR CHANNELS [J].
DE KONINCK, Y ;
MODY, I .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 71 (04) :1318-1335
[10]   ENHANCEMENT OF THE GLUTAMATE RESPONSE BY CAMP-DEPENDENT PROTEIN-KINASE IN HIPPOCAMPAL-NEURONS [J].
GREENGARD, P ;
JEN, J ;
NAIRN, AC ;
STEVENS, CF .
SCIENCE, 1991, 253 (5024) :1135-1138