A parametric fMRI study of overt and covert shifts of visuospatial attention

被引:253
作者
Beauchamp, MS [1 ]
Petit, L
Ellmore, TM
Ingeholm, J
Haxby, JV
机构
[1] NIMH, Lab Brain & Cognit, Bethesda, MD 20892 USA
[2] Univ Caen, Univ Paris 05, CNRS,CEA,UMR 6095, Grp Imagerie Neurofonct, F-14032 Caen, France
关键词
D O I
10.1006/nimg.2001.0788
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
It has recently been demonstrated that a cortical network of visuospatial and oculomotor control areas is active for covert shifts of spatial attention (shifts of attention without eye movements) as well as for overt shifts of spatial attention (shifts of attention with saccadic eye movements). Studies examining activity in this visuospatial network during attentional shifts at a single rate have given conflicting reports about how the activity differs for overt and covert shifts. To better understand how the network subserves attentional shifts, we performed a parametric study in which subjects made either overt attentional shifts or covert attentional shifts at three different rates (0.2, 1.0, and 2.0 Hz). At every shift rate, both overt and covert shifts of visuospatial attention induced activations in the precentral sulcus, intraparietal sulcus, and lateral occipital cortex that were of greater amplitude for overt than during covert shifting. As the rate of attentional shifts increased, responses in the visuospatial network increased in both overt and covert conditions but this parametric increase was greater during overt shifts. These results confirm that overt and covert attentional shifts are subserved by the same network of areas. Overt shifts of attention elicit more neural activity than do covert shifts, reflecting additional activity associated with saccade execution. An additional finding concerns the anatomical organization of the visuospatial network. Two distinct activation foci were observed within the precentral sulcus for both overt and covert attentional shifts, corresponding to specific anatomical landmarks. We therefore reappraise the correspondence of these two precentral areas with the frontal eye fields. (C) 2001 Academic Press.
引用
收藏
页码:310 / 321
页数:12
相关论文
共 55 条
[1]  
Berman RA, 1999, HUM BRAIN MAPP, V8, P209, DOI 10.1002/(SICI)1097-0193(1999)8:4<209::AID-HBM5>3.0.CO
[2]  
2-0
[3]   PRIMATE FRONTAL EYE FIELDS .2. PHYSIOLOGICAL AND ANATOMICAL CORRELATES OF ELECTRICALLY EVOKED EYE-MOVEMENTS [J].
BRUCE, CJ ;
GOLDBERG, ME ;
BUSHNELL, MC ;
STANTON, GB .
JOURNAL OF NEUROPHYSIOLOGY, 1985, 54 (03) :714-734
[4]   The functional anatomy of attention to visual motion -: A functional MRI study [J].
Büchel, C ;
Josephs, O ;
Rees, G ;
Turner, R ;
Frith, CD ;
Friston, KJ .
BRAIN, 1998, 121 :1281-1294
[5]   PRIMATE FRONTAL EYE FIELD ACTIVITY DURING NATURAL SCANNING EYE-MOVEMENTS [J].
BURMAN, DD ;
SEGRAVES, MA .
JOURNAL OF NEUROPHYSIOLOGY, 1994, 71 (03) :1266-1271
[6]   Parametric analysis of fMRI data using linear systems methods [J].
Cohen, MS .
NEUROIMAGE, 1997, 6 (02) :93-103
[7]   A common network of functional areas for attention and eye movements [J].
Corbetta, M ;
Akbudak, E ;
Conturo, TE ;
Snyder, AZ ;
Ollinger, JM ;
Drury, HA ;
Linenweber, MR ;
Petersen, SE ;
Raichle, ME ;
Van Essen, DC ;
Shulman, GL .
NEURON, 1998, 21 (04) :761-773
[8]  
Cox RW, 1999, MAGNET RESON MED, V42, P1014, DOI 10.1002/(SICI)1522-2594(199912)42:6<1014::AID-MRM4>3.0.CO
[9]  
2-F
[10]   AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [J].
Cox, RW .
COMPUTERS AND BIOMEDICAL RESEARCH, 1996, 29 (03) :162-173