Condensin-dependent localisation of topoisomerase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis

被引:107
作者
Coelho, PA
Queiroz-Machado, J
Sunkel, CE
机构
[1] Univ Porto, Inst Biol Mol & Celular, P-4150180 Oporto, Portugal
[2] Univ Fernando Pessoa, Fac Ciencias Saude, P-4249004 Oporto, Portugal
[3] Univ Porto, Inst Ciencias Biomed Abel Salazar, P-4150180 Oporto, Portugal
关键词
SMC4; DRAD21; topoisomerase II; condensin; cohesin; chromosomes; mitosis; Drosophila;
D O I
10.1242/jcs.00799
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Assembly of compact mitotic chromosomes and resolution of sister chromatids are two essential processes for the correct segregation of the genome during mitosis. Condensin, a five-subunit protein complex, is thought to be required for chromosome condensation. However, recent genetic analysis suggests that condensin is only essential to resolve sister chromatids. To study further the function of condensin we have depleted DmSMC4, a subunit of the complex, from Drosophila S2 cells by dsRNA-mediated interference. Cells lacking DmSMC4 assemble short mitotic chromosomes with unresolved sister chromatids where Barren, a non-SMC subunit of the complex is unable to localise. Topoisomerase II, however, binds mitotic chromatin after depletion of DmSMC4 but it is no longer confined to a central axial structure and becomes diffusely distributed all over the chromatin. Furthermore, cell extracts from DmSMC4 dsRNA-treated cells show significantly reduced topoisomerase II-dependent DNA decatenation activity in vitro. Nevertheless, DmSMC4-depleted chromosomes have centromeres and kinetochores that are able to segregate, although sister chromatid arms form extensive chromatin bridges during anaphase. These chromatin bridges do not result from inappropriate maintenance of sister chromatid cohesion by DRAD21, a subunit of the cohesin complex. Moreover, depletion of DmSMC4 prevents premature sister chromatid separation, caused by removal of DRAD21, allowing cells to exit mitosis with chromatin bridges. Our results suggest that condensin is required so that an axial chromatid structure can be organised where topoisomerase II can effectively promote sister chromatid resolution.
引用
收藏
页码:4763 / 4776
页数:14
相关论文
共 67 条
[1]   CHROMOSOME ASSEMBLY INVITRO - TOPOISOMERASE-II IS REQUIRED FOR CONDENSATION [J].
ADACHI, Y ;
LUKE, M ;
LAEMMLI, UK .
CELL, 1991, 64 (01) :137-148
[2]   Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior [J].
Bhalla, N ;
Biggins, S ;
Murray, AW .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (02) :632-645
[3]   Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with topoisomerase II [J].
Bhat, MA ;
Philp, AV ;
Glover, DM ;
Bellen, HJ .
CELL, 1996, 87 (06) :1103-1114
[4]  
Biggins S, 2001, GENETICS, V159, P453
[5]   The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions [J].
Blower, MD ;
Karpen, GH .
NATURE CELL BIOLOGY, 2001, 3 (08) :730-739
[6]   Mitotic chromosome condensation in the rDNA requires TRF4 and DNA topoisomerase I in Saccharomyces cerevisiae [J].
Castano, IB ;
Brzoska, PM ;
Sadoff, BU ;
Chen, HY ;
Christman, MF .
GENES & DEVELOPMENT, 1996, 10 (20) :2564-2576
[7]   Dynamics of human DNA topoisomerases IIα and IIβ in living cells [J].
Christensen, MO ;
Larsen, MK ;
Barthelmes, HU ;
Hock, R ;
Andersen, CL ;
Kjeldsen, E ;
Knudsen, BR ;
Westergaard, O ;
Boege, F ;
Mielke, C .
JOURNAL OF CELL BIOLOGY, 2002, 157 (01) :31-44
[8]   An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast [J].
Ciosk, R ;
Zachariae, W ;
Michaelis, C ;
Shevchenko, A ;
Mann, M ;
Nasmyth, K .
CELL, 1998, 93 (06) :1067-1076
[9]   INHIBITORY EFFECT OF DIHYDROXYACETONE ON GLUCONOBACTER-OXYDANS - KINETIC ASPECTS AND EXPRESSION BY MATHEMATICAL EQUATIONS [J].
CLARET, C ;
BORIES, A ;
SOUCAILLE, P .
JOURNAL OF INDUSTRIAL MICROBIOLOGY, 1993, 11 (02) :105-112
[10]   Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways [J].
Clemens, JC ;
Worby, CA ;
Simonson-Leff, N ;
Muda, M ;
Maehama, T ;
Hemmings, BA ;
Dixon, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6499-6503